On the queueing model with negative customers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2005), pp. 22-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The queueing model $M_r/G_r/1/\infty$ with head – of the line priority discipline and with the additional Poisson stream of signals is considered. The arising signal destroys the customers being in model. The stationary distribution of queue length for this model is of tained in terms of generating functions.
@article{UZERU_2005_1_a1,
     author = {Kh. L. Vardanyan},
     title = {On the queueing model with negative customers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--26},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2005_1_a1/}
}
TY  - JOUR
AU  - Kh. L. Vardanyan
TI  - On the queueing model with negative customers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2005
SP  - 22
EP  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2005_1_a1/
LA  - ru
ID  - UZERU_2005_1_a1
ER  - 
%0 Journal Article
%A Kh. L. Vardanyan
%T On the queueing model with negative customers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2005
%P 22-26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2005_1_a1/
%G ru
%F UZERU_2005_1_a1
Kh. L. Vardanyan. On the queueing model with negative customers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2005), pp. 22-26. http://geodesic.mathdoc.fr/item/UZERU_2005_1_a1/

[1] L. Kleinrok, Metodika vvedeniya dislokatsii v bloki rentgenovskogo interferometra, Mashinostroenie, M., 1978, 432 pp.

[2] B. V. Gnedenko, E. A. Danielyan i dr., Prioritetnye sistemy obsluzhivaniya, MGU, M., 1973, 448 pp.

[3] X. Chao, M. Miyazawa, M. Piendo, Queuing Networks: customers, signals and product form solution, Pergamon Press, New York, 1999

[4] E. Gelenbe, “Random Neural Networks with Negative and Positive Signals and Product Form Solution”, Neural Computation, 1989, no. 1, 502–510 | DOI | MR

[5] W. S. Yang, K. C. Chae, “A note on the $GI/M/1$ queue with Poisson negative arrivals”, J. Appl. Prob., 38 (2001), 1081–1085 | MR

[6] Q. L. Li, Y. A. Zhao, “A $MAP/G/$1 Queue with Negative Customers”, Queueing Systems, 47 (2004), 5–43 | DOI | MR

[7] R. Chakka, P. G. Harrison, “A Markov modulated multi-server queue with negative customers – The $MM~~ CPP/GE/c/L ~~~G$-queue”, Acta Informatica, 37 (2001), 881–919 | DOI | MR

[8] A. N. Dudin, A. V. Karolik, “$BMAP/SM/1$ queue with Markovian input of disasters and non-instantaneous recovery”, Performance Evaluation, 45 (2001), 19-31 | DOI

[9] Kh. V. Kerobyan, A. S. Tovmasyan, “Issledovanie i optimizatsiya parametrov multimediinoi sistemy s pomoschyu $G$-setei”, Informatsionnye tekhnologii i upravlenie, 2 (2002), 8–19

[10] X. A. Chao, “A queueing network model with catastrophes and product form solution”, Oper. Res. Letters, 18 (1995), 75-79 | DOI | MR

[11] J. R. Artalejo, “$G$-networks: A versatile approach for work removal in queueing networks”, European Journal of Operational Research, 126 (2000), 233-249 | DOI | MR

[12] V. F. Matveev, V. G. Ushakov, Sistemy massovogo obsluzhivaniya, MGU, M., 1984, 240 pp. | MR