The estimate of rate of convergence in Erdo's--Kac limit theorem for dependent variables
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2004), pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The power type estimate of the rate of convergence in Erdo’s–Kac limit theorem is obtained for stationary uniformly strong mixing random sequences.
Keywords: Erdo’s–Kac limit theorem, mixing random sequences.
@article{UZERU_2004_2_a2,
     author = {T. P. Kazanchyan},
     title = {The estimate of rate of convergence in {Erdo's--Kac} limit theorem for dependent variables},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--26},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2004_2_a2/}
}
TY  - JOUR
AU  - T. P. Kazanchyan
TI  - The estimate of rate of convergence in Erdo's--Kac limit theorem for dependent variables
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2004
SP  - 20
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2004_2_a2/
LA  - ru
ID  - UZERU_2004_2_a2
ER  - 
%0 Journal Article
%A T. P. Kazanchyan
%T The estimate of rate of convergence in Erdo's--Kac limit theorem for dependent variables
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2004
%P 20-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2004_2_a2/
%G ru
%F UZERU_2004_2_a2
T. P. Kazanchyan. The estimate of rate of convergence in Erdo's--Kac limit theorem for dependent variables. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2004), pp. 20-26. http://geodesic.mathdoc.fr/item/UZERU_2004_2_a2/

[1] P. Erdo's, M. Kas, Bull. Amer. Math. Soc., 52 (1946), 92—302 | MR

[2] M. Donsker, Mem. Amer. Math. Soc., 6, 1951 | Zbl

[3] Yu. V. Prokhorov, Teopiya ver. i ee primeneniya, 1:2 (1956), 177–238 | MR | Zbl

[4] P. Billingeli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[5] K. L. Chung, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl

[6] R. P Pakshirajan, Teopiya ver. i ee primeneniya, IV:4 (1959), 398—403 | MR

[7] A. A. Borovkov, Teopiya ver. i ee primeneniya, XVIII:2 (1973), 217—234 | Zbl

[8] A. N. Sakhanenko, O tochnosti normalnoi approksimatsii v printsipe invariantnosti, Nauka, Novosibirsk, 1989

[9] A. N. Tikhomirov, Teopiya ver. i ee primeneniya, XXV:4 (1980), 800–818 | Zbl

[10] T. P. Kazanchyan, Uchenye zapiski EGU, 1984, no. 2, 22—29 | MR | Zbl

[11] T. P. Kazanchyan, Izv. AN Arm. SSR., Matematika, XXIV:6 (1989), 593—602 | MR | Zbl

[12] Kaganava S., Yokohama Math. J., 31:1, 2 (1983), 121—129 | MR

[13] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965 | MR

[14] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986

[15] R. J. Serfling, Ann. Math. Statist., 41 (1970), 1227—1234 | DOI | MR | Zbl

[16] B. K. Matskyavichus, Teopiya ver. i ee primeneniya, XXVIII:3 (1983), 565–569

[17] K. Yoshihara, Z. W. Cebiete, 43 (1979), 319–329 | DOI | MR