The Dirichlet problem for the elliptic system of weakly connected second order differential equations with discontinuous boundary continuous
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem is observed by different authors both for one equation and for systems of equations. In these authors’ articles the boundary function is continuous or has weak singularity (integral singularity). This article observe the case where boundary function may also have not weak singularity. In $M_D(x_1,x_2, \ldots, x_h, \infty; l_1, l_2, \ldots, l_h, l_{h+1})$ class is observed $$A\dfrac{\partial^2 u }{\partial x^2}+2B \dfrac{\partial^2 u }{\partial x \partial y}+C \dfrac{\partial^2 u }{\partial y^2}=0,~u(x,0)=f(x),~x\neq x_1,x_2,\ldots,x_h,$$ the boundary problem, where $f(x)\in N_\Gamma(x_1,x_2,\ldots, x_h,\infty;l_1,l_2,\ldots,l_h,l_{h+1})$. It is proved that the problem has a solution and one solution is found.
Keywords: Boundary function, not weak singularity.
@article{UZERU_2003_3_a2,
     author = {V. A. Ohanyan},
     title = {The {Dirichlet} problem for the elliptic system of weakly connected second order differential equations with discontinuous boundary continuous},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--24},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a2/}
}
TY  - JOUR
AU  - V. A. Ohanyan
TI  - The Dirichlet problem for the elliptic system of weakly connected second order differential equations with discontinuous boundary continuous
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 16
EP  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a2/
LA  - ru
ID  - UZERU_2003_3_a2
ER  - 
%0 Journal Article
%A V. A. Ohanyan
%T The Dirichlet problem for the elliptic system of weakly connected second order differential equations with discontinuous boundary continuous
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 16-24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a2/
%G ru
%F UZERU_2003_3_a2
V. A. Ohanyan. The Dirichlet problem for the elliptic system of weakly connected second order differential equations with discontinuous boundary continuous. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 16-24. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a2/

[1] A. G. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR | Zbl

[2] N. E. Tovmasyan, “Obschaya kraevaya zadacha dlya ellipticheskikh sistem vtorogo poryadka s postoyannymi koeffitsientami”, Differents. uravneniya, 1966, no. 1,2, 3–23, 163–171 | MR

[3] E. P. Meliksetyan, Izv. AN Arm. SSR. Matematika, 1979, no. 5, 391–402 | MR | Zbl

[4] A. P. Soldatov, “Metod teopii funktsii v kpaevykh zadachakh na ploskosti. I. Gladkii sluchai”, Izv. AH SSSR. Sep. Mat., 55:5 (1991), 1070–1100 | MR | Zbl

[5] N. E. Tovmasian, Boundary Value Problems for Partial Differentia! Equations and Applications in Electrodynamics, World Scientific Publ., Singapore, 1994 | MR

[6] H. E. Tovmasyan, B. C. Zakaryan, Izv. NAN Armenii. Matematika, 2000, no. 6

[7] V. A. Oganyan, Izv. NAN Armenii. Matematika, 1981, no. 6, 465–477 | Zbl

[8] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR