Investigation of some problems of functional analysis in linear space with limit operation of a sequence
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2002), pp. 3-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is based on the theory of spaces with limit operation of a sequence constructed by the author. In a vector space $X$ partially ordered set $L$ of all linear limit operations of a sequence is considered, each of them generates the same system of bounded subsets in $X$ as the given linear limit operation of a sequence. It is proved that $L$ contains the smallest element, each nonempty subset from $L$ has the greatest lower bound and the perfect ordered subset has tne least upper bound that is $L$ contains maximal elements. The characteristics of the smallest element and the maximal elements of $L$ are obtained. For linear spaces with limit operation of a sequence statements about a neighborhood of zero, convex sets and differentiable mappings as well as statements that generalize the classical Banach–Steinhaus theorem and the theorem on open mapping are proved. In particular we obtain results reinforcing some known versions of Banach–Steinhaus theorem for topological vector spaces.
Keywords: Banach–Steinhaus theorem for topological vector spaces.
@article{UZERU_2002_2_a0,
     author = {I. G. Khachatryan},
     title = {Investigation of some problems of functional analysis in linear space with limit operation of a sequence},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--43},
     publisher = {mathdoc},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_2_a0/}
}
TY  - JOUR
AU  - I. G. Khachatryan
TI  - Investigation of some problems of functional analysis in linear space with limit operation of a sequence
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 3
EP  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_2_a0/
LA  - ru
ID  - UZERU_2002_2_a0
ER  - 
%0 Journal Article
%A I. G. Khachatryan
%T Investigation of some problems of functional analysis in linear space with limit operation of a sequence
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 3-43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2002_2_a0/
%G ru
%F UZERU_2002_2_a0
I. G. Khachatryan. Investigation of some problems of functional analysis in linear space with limit operation of a sequence. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2002), pp. 3-43. http://geodesic.mathdoc.fr/item/UZERU_2002_2_a0/

[1] N. Burbaki, Ocherki po istorii matematiki, Izd-vo inostr. literatury, M., 1963

[2] H. Burbaki, Obschaya topologiya. Osnovnye struktury, Mir, M., 1968

[3] K. Kuratovskii, Obschaya topologiya, v. 1, Mir, M., 1966 | MR

[4] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[5] M. Frechet, Rend, del Circ. Mat. di Palermo, 22 (1906), 1–74 | DOI | Zbl

[6] P. Urysohn, Enseign. Math., 25 (1926), 77–83 | Zbl

[7] P. S. Uryson, “O lokalno svyaznykh kontinuumakh”, Trudy po topologii i drugim oblastyam matematiki, v. 2, GITTL, M.–L., 1951 | MR

[8] J. Kisunski, Colloquium Mathematicum, 7 (1959(1960)), 205–211 (in French) | DOI | MR

[9] F. Riez, Atti del IV Congresso Internazionale dei Matematici (Roma, 1908), v. 2, Roma, 1909, 18–24

[10] F. Hausdorff, Grundzuge der Mengenlehre, Viet, Leipzig, 1914 | MR | Zbl

[11] J. Kelley, Duke Math. J., 17 (1950), 277–283 | DOI | MR | Zbl

[12] D. Kelli, Obschaya topologiya, Nauka, M., 1981 | MR | Zbl

[13] M. Ya. Antonovskii, I. G. Koshevnikova, Matem. Vestnik, 9(24) (1972), 373–378 (in Russian) | MR

[14] E. Binz, Math. Ann. (German), 175 (1968), 169–184 | DOI | MR | Zbl

[15] A. Goetz, Coll. Math., 9 (1962), 223–231 | DOI | MR | Zbl

[16] H. J. Kowalsky, Math. Nachr., 2:5–6 (1954), 301–340 | DOI | MR | Zbl

[17] C. H. Cook, H. R. Fischer, “Uniform convergence structures”, Math. Ann., 173 (1967), 290–306 | DOI | MR | Zbl

[18] W. Taylor, Math. Ann., 186 (1970), 215–227 | DOI | MR | Zbl

[19] H. R. Fisher, Math. Ann., 137 (1959), 269–303 | DOI | MR

[20] A. Frelikher, B. Bukher, Differentsialnoe ischislenie v vektornykh prostranstvakh bez normy, Mir, M., 1970 | MR | Zbl

[21] I. G. Khachatryan, Prostranstva s operatsiei predela, Izd-vo EGU, Er., 1999

[22] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Mir, M. (in Russian) | MR

[23] L. Shvarts, Analiz, v. 2, Mir, M., 1972

[24] L. A. Lyusternik, V. I. Sobolev, Kratkii kurs funktsionalnogo analiza, Vyssh. shkola, M., 1982 | MR | Zbl

[25] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[26] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, 3-e izd., Nauka, M., 1984 | MR | Zbl

[27] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnyi analiz, Nauka, M., 1976, 543 pp. | MR

[28] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[29] A. I. Markushevich, Kratkii kurs teorii analiticheskikh funktsii, Nauka, M., 1966, 388 pp. | MR

[30] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovykh prostranstvakh, Nauka, M., 1966 | MR | Zbl

[31] G. M. Fikhtengolts, Differentsialnoe i integralnoe ischislenie, v. 1, Nauka, M., 1969