Possible complexes of three-dimensional planes in projective space $P^6(I)$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2001), pp. 35-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work possible complexes of three-dimensional planes in six-measured projective space $P^6$ are studied. It’s proved that one-parametric family of cones of second order in $P^6$ with univariate top and with three-dimensional flat forming defines four-parametric possible family of planes $E^3$ which are all three- dimensional forming to this cones.
Keywords: cones of second order, univariate top, three-dimensional flat.
@article{UZERU_2001_3_a3,
     author = {V. Nersesyan},
     title = {Possible complexes of three-dimensional planes in projective space $P^6(I)$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {35--39},
     publisher = {mathdoc},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_3_a3/}
}
TY  - JOUR
AU  - V. Nersesyan
TI  - Possible complexes of three-dimensional planes in projective space $P^6(I)$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 35
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_3_a3/
LA  - ru
ID  - UZERU_2001_3_a3
ER  - 
%0 Journal Article
%A V. Nersesyan
%T Possible complexes of three-dimensional planes in projective space $P^6(I)$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 35-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_3_a3/
%G ru
%F UZERU_2001_3_a3
V. Nersesyan. Possible complexes of three-dimensional planes in projective space $P^6(I)$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2001), pp. 35-39. http://geodesic.mathdoc.fr/item/UZERU_2001_3_a3/

[1] V. A. Nersesyan, DAN ArmSSR, 70:3 (1980), 151–155 | MR | Zbl

[2] V. A. Nersesyan, Uchenye zapiski EGU, 1981, no. 1, 13–18 | Zbl

[3] V. A. Nersesyan, Uchenye zapiski EGU, 1983, no. 2, 13–19 | MR | Zbl

[4] V. A. Nersesyan, Uchenye zapiski EGU, 1986, no. 2, 34–38 | Zbl

[5] I. M. Gelfand, M. I. Graev, “Kompleksy pryamykh v prostranstve $\mathbb{C}^n$”, Funkts. analiz i ego pril., 2:3 (1968), 39–52 | MR | Zbl

[6] K. Maius, Funkts. analiz i ego pril., 7:1 (1973), 79–81 | MR | Zbl

[7] I. M. Gelfand, M. I. Graev, Funkts. analiz i ego pril., 25:1 (1991), 1–6 | MR | Zbl

[8] V. A. Nersesyan, DAN Arm. SSR, 70:5 (1980), 280–285 | MR | Zbl

[9] L. 3. Kruglyakov, “O nekotorykh kompleksakh mnogomernykh ploskostei v proektivnom prostranstve”, Funkts. analiz i ego pril., 16:3 (1982), 66–67 | MR | Zbl

[10] S. V. Koltsova, Funkts. analiz i ego pril., 1977, no. 9, 84–92 | Zbl

[11] I. V. Bubyakin, Funkts. analiz i ego pril., 25:3 (1991), 73–76 | MR | Zbl

[12] S. P. Finikov, Metod vneshnikh form Kartana, Gostekhizdat, M., 1948 | MR | Zbl