Riman boundary volue problem for nonregular elliptic equation of second order in the domains limited by ellipse
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1992), pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Riman type problem for second order nonregular elliptic equations has been considered. The number of linearly independent solutions of the homogeneous problem has been calculated. It has been proved also that for the solution of a nonhomogeneous problem one linearly independent condition is necessary and sufficient.
Keywords: Riman type problem.
@article{UZERU_1992_1_a1,
     author = {H. M. Hayrapetyan},
     title = {Riman boundary volue problem for nonregular elliptic equation of second order in the domains limited by ellipse},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {15--22},
     publisher = {mathdoc},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1992_1_a1/}
}
TY  - JOUR
AU  - H. M. Hayrapetyan
TI  - Riman boundary volue problem for nonregular elliptic equation of second order in the domains limited by ellipse
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1992
SP  - 15
EP  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1992_1_a1/
LA  - ru
ID  - UZERU_1992_1_a1
ER  - 
%0 Journal Article
%A H. M. Hayrapetyan
%T Riman boundary volue problem for nonregular elliptic equation of second order in the domains limited by ellipse
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1992
%P 15-22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1992_1_a1/
%G ru
%F UZERU_1992_1_a1
H. M. Hayrapetyan. Riman boundary volue problem for nonregular elliptic equation of second order in the domains limited by ellipse. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1992), pp. 15-22. http://geodesic.mathdoc.fr/item/UZERU_1992_1_a1/

[1] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskogo uravneniya vtorogo poryadka, izd-vo “Nauka”, Moskva, 1966

[2] N. E. Tovmasyan, “Effektivnye metody resheniya zadachi Dirikhle dlya ellipticheskikh sistem differentsialnykh uravnenii vtorogo poryadka s postoyannymi koeffitsientami v oblastyakh, ogranichennykh ellipsami”, Diff. uravneniya, 5:1 (1969) | MR | Zbl

[3] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[4] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968