Designing of compressed cylindrical shell made of composite material with optimal stability
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimal eigenvalue (critical force) of the stability problem of the compressed shell, made of composite material has been found in the paper as well as the respective eigenfunction of stability. Assuming, that the shell is made of monolayers of orthotropic composite material arranged in turn at $\pm\phi$ towards the shell axis, we have obtained the maximal value of the critical force. Short, average, long and overlong cylindrical shells have been investigated.
@article{UZERU_1989_3_a7,
     author = {V. V. Gnuni},
     title = {Designing of compressed cylindrical shell made of composite material with optimal stability},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {43--49},
     publisher = {mathdoc},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_3_a7/}
}
TY  - JOUR
AU  - V. V. Gnuni
TI  - Designing of compressed cylindrical shell made of composite material with optimal stability
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 43
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_3_a7/
LA  - ru
ID  - UZERU_1989_3_a7
ER  - 
%0 Journal Article
%A V. V. Gnuni
%T Designing of compressed cylindrical shell made of composite material with optimal stability
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 43-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_3_a7/
%G ru
%F UZERU_1989_3_a7
V. V. Gnuni. Designing of compressed cylindrical shell made of composite material with optimal stability. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 43-49. http://geodesic.mathdoc.fr/item/UZERU_1989_3_a7/

[1] S. A. Ambartsumyan, Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1976

[2] N. A. Alfutov, Osnovy rascheta na ustoichivost uprugikh sistem, Mashinostroenie, M., 1991 | MR

[3] N. A. Alfutov, P. A. Zinovev, B. G. Popov, Raschët mnogosloinykh plastin i obolochek iz kompozitsionnykh materialov, Mashinostroenie, M., 1984, 263 pp.

[4] V. V. Vasilev, Mekhanika konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988, 269 pp.

[5] V. S. Sarkisyan, Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo EGU, Er., 1976, 534 pp.

[6] A. S. Nemirovskii, V. I. Samsonov, “O ratsionalnom armirovanii tsilindricheskikh obolochek, szhimaemykh osevoi siloi”, Izv. AN SSSR, MTT, 1974, no. 1, 103–112

[7] V. I. Korolev, Sloistye anizotropnye plastinki i obolochki iz armirovannykh plastmass, Mashinostroenie, M., 1965, 272 pp.

[8] R. B. Rikarde, G. A. Tetere, “O vybore optimalnykh parametrov tsilindricheskoi stekloplastikovoi obolochki pri osevom szhatii”, Mekhanika polimerov, 1970, no. 6, 1132–1134