Ordinary differential equation system of non-canonical shape. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 10-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $Ay^{\prime}+By=f(t)$, where $A$ and $B$ are square matrices has been considered. The solution has been sought in such a class of vector functions, the components of which with their derivatives increase in infinition not faster than any degree of $t$. The case $\det A=0$ has been considered. The sufficient and necessary conditions of the solution-existence for initial and general initial problems have been obtained.
@article{UZERU_1989_3_a1,
     author = {S. K. Afyan},
     title = {Ordinary differential equation system of non-canonical shape. {II}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {10--14},
     publisher = {mathdoc},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_3_a1/}
}
TY  - JOUR
AU  - S. K. Afyan
TI  - Ordinary differential equation system of non-canonical shape. II
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 10
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_3_a1/
LA  - ru
ID  - UZERU_1989_3_a1
ER  - 
%0 Journal Article
%A S. K. Afyan
%T Ordinary differential equation system of non-canonical shape. II
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 10-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_3_a1/
%G ru
%F UZERU_1989_3_a1
S. K. Afyan. Ordinary differential equation system of non-canonical shape. II. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 10-14. http://geodesic.mathdoc.fr/item/UZERU_1989_3_a1/

[1] G. E. Shilov, Matematicheskii analiz, 2-oi spets. kurs, Nauka, M., 1965 | MR | Zbl

[2] G. V. Dikopolov, G. E. Shilov, “O korrektnykh kraevykh zadachakh v poluprostranstve dlya uravnenii v chastnykh proizvodnykh s pravoi chastyu”, SMZh, 1:1 (1960) | MR | Zbl

[3] V. P. Palamodov, “O korrektnykh kraevykh zadachakh dlya uravnenii v chastnykh proizvodnykh v poluprostranstve”, Izv. AN SSSR, seriya matem., 24 (1960), 381–386 | MR | Zbl

[4] A. L. Pavlov, “Ob obschikh kraevykh zadachakh dlya differentsialnykh uravnenii s postoyannymi koeffitsientami v poluprostranstve”, Matem. sb., 103(145) (1977), 367–391 | MR | Zbl