On the Haar and Franklin series with identical coefficients
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\big\lbrace \chi_n(x)\big\rbrace^\infty_{n=1}$ is Haar system and $\big\lbrace f_n(x)\big\rbrace^\infty_{n=0}$ is Franklin system, then for every $\lbrace a_n\rbrace^\infty_{n=0}$ and $p>0$ the following relation is proved \begin{equation} \left\Vert\left\lbrace\sum\limits^\infty_{n=0}a^2_n f^2_n(x)\right\rbrace^{\frac{1}{2}} \right\Vert_p \sim \left\Vert\left\lbrace\sum\limits^\infty_{n=0}a^2_n \chi^2_{n+1}(x)\right\rbrace^{\frac{1}{2}} \right\Vert_p, \end{equation} (1) has been proved in [2] when $p>l$ and in [4] when $\dfrac{1}{2}$ but the methods of [2] and [4] are not applicable in the case $0$. Some consequences are received from (1) as well.
@article{UZERU_1989_3_a0,
     author = {G. G. Gevorkyan},
     title = {On the {Haar} and {Franklin} series with identical coefficients},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--9},
     publisher = {mathdoc},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_3_a0/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On the Haar and Franklin series with identical coefficients
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 3
EP  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_3_a0/
LA  - ru
ID  - UZERU_1989_3_a0
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On the Haar and Franklin series with identical coefficients
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 3-9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_3_a0/
%G ru
%F UZERU_1989_3_a0
G. G. Gevorkyan. On the Haar and Franklin series with identical coefficients. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1989), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_1989_3_a0/