Оптимальные множества в $n-$мерном кубе
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article some estimations are brought for the functional $f_n(A, \varphi)=\sum\limits_{x \in E^n}\varphi\left(\min\limits_{y\in A}\rho(x, y)\right)$, where $A$ is a subset of the $n$-metrical Cube $E^n$, defined on the Galua’s field $GF(q), \varphi(k)$ is a monotone function, defined on the set of natural numbers, and is the Haming’s distance. Some subsets are described, for which these estimations are accessible. For $q = 2$ the optimal subsets are described for the function $\varphi(k)=k$ and tor the class of $3$-powered subsets, for which $f_n(A, \varphi)$ takes the minimal value.
@article{UZERU_1989_1_a3,
     author = {G. L. Movsisyan and Zh. G. Margaryan},
     title = {{\CYRO}{\cyrp}{\cyrt}{\cyri}{\cyrm}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyrm}{\cyrn}{\cyro}{\cyrzh}{\cyre}{\cyrs}{\cyrt}{\cyrv}{\cyra} {\cyrv} $n-${\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyrm} {\cyrk}{\cyru}{\cyrb}{\cyre}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--26},
     publisher = {mathdoc},
     number = {1},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a3/}
}
TY  - JOUR
AU  - G. L. Movsisyan
AU  - Zh. G. Margaryan
TI  - Оптимальные множества в $n-$мерном кубе
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 18
EP  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a3/
LA  - ru
ID  - UZERU_1989_1_a3
ER  - 
%0 Journal Article
%A G. L. Movsisyan
%A Zh. G. Margaryan
%T Оптимальные множества в $n-$мерном кубе
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 18-26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_1_a3/
%G ru
%F UZERU_1989_1_a3
G. L. Movsisyan; Zh. G. Margaryan. Оптимальные множества в $n-$мерном кубе. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 18-26. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a3/

[1] V. K. Leontev, Metricheskie funktsionaly teorii kodirovaniya, Diss. na soisk. uch. st. kand. fiz-mat. nauk, Novosibirsk, 1969

[2] Yu. Shreider, Chto takoe rasstoyanie, Fizmatgiz, M., 1963

[3] G. L. Movsisyan, “Razbienie metricheskogo prostranstva na oblasti Dirikhle”, Molodoi nauchnyi rabotnik, EGU, 1982, no. 2

[4] L. A. Aslanyan, “Izoperimetricheskaya zadacha i smezhnye ekstremalnye zadachi dlya diskretnykh prostranstv”, Problemy kibernetiki, 1975, no. 36

[5] Cr. Katona, “The Hamming-sphere has minimum boundary”, Studia Scienl. Math.Hungarica, 1975, no. 10 | Zbl

[6] F. Dzh. Mak-Vilyams, H. Dzh. Sloen, Teoriya kodov, ispravlyayuschikh oshibki, M., 1979

[7] G. P. Gavrilov, A. A. Sapozhenko, Sbornik zadach po diskretnoi matematike, Nauka, M., 1977