@article{UZERU_1989_1_a3,
author = {G. L. Movsisyan and Zh. G. Margaryan},
title = {{\CYRO}{\cyrp}{\cyrt}{\cyri}{\cyrm}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyrm}{\cyrn}{\cyro}{\cyrzh}{\cyre}{\cyrs}{\cyrt}{\cyrv}{\cyra} {\cyrv} $n-${\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyrm} {\cyrk}{\cyru}{\cyrb}{\cyre}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {18--26},
year = {1989},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a3/}
}
TY - JOUR AU - G. L. Movsisyan AU - Zh. G. Margaryan TI - Оптимальные множества в $n-$мерном кубе JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1989 SP - 18 EP - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a3/ LA - ru ID - UZERU_1989_1_a3 ER -
G. L. Movsisyan; Zh. G. Margaryan. Оптимальные множества в $n-$мерном кубе. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 18-26. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a3/
[1] V. K. Leontev, Metricheskie funktsionaly teorii kodirovaniya, Diss. na soisk. uch. st. kand. fiz-mat. nauk, Novosibirsk, 1969
[2] Yu. Shreider, Chto takoe rasstoyanie, Fizmatgiz, M., 1963
[3] G. L. Movsisyan, “Razbienie metricheskogo prostranstva na oblasti Dirikhle”, Molodoi nauchnyi rabotnik, EGU, 1982, no. 2
[4] L. A. Aslanyan, “Izoperimetricheskaya zadacha i smezhnye ekstremalnye zadachi dlya diskretnykh prostranstv”, Problemy kibernetiki, 1975, no. 36
[5] Cr. Katona, “The Hamming-sphere has minimum boundary”, Studia Scienl. Math.Hungarica, 1975, no. 10 | Zbl
[6] F. Dzh. Mak-Vilyams, H. Dzh. Sloen, Teoriya kodov, ispravlyayuschikh oshibki, M., 1979
[7] G. P. Gavrilov, A. A. Sapozhenko, Sbornik zadach po diskretnoi matematike, Nauka, M., 1977