On a solution method of non-orthotropic plate’s thermoelasticity problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 140-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a method is suggested for solution of the non-orthotropic plate’s thermoelasticity problem. The solution is represented in the form of series of geographical small parameter degrees, which is introduced in the equation of the tiled contour. A process has been shown by means of which having the first member it is possible to find the others. At the end the asymptotic convergence of the solution is represented in the metric $L_2(\Omega)$.
@article{UZERU_1989_1_a11,
     author = {V. S. Sarkisyan and K. A. Galstian},
     title = {On a solution method of non-orthotropic plate{\textquoteright}s thermoelasticity problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {140--143},
     publisher = {mathdoc},
     number = {1},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1989_1_a11/}
}
TY  - JOUR
AU  - V. S. Sarkisyan
AU  - K. A. Galstian
TI  - On a solution method of non-orthotropic plate’s thermoelasticity problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1989
SP  - 140
EP  - 143
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1989_1_a11/
LA  - ru
ID  - UZERU_1989_1_a11
ER  - 
%0 Journal Article
%A V. S. Sarkisyan
%A K. A. Galstian
%T On a solution method of non-orthotropic plate’s thermoelasticity problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1989
%P 140-143
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1989_1_a11/
%G ru
%F UZERU_1989_1_a11
V. S. Sarkisyan; K. A. Galstian. On a solution method of non-orthotropic plate’s thermoelasticity problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1989), pp. 140-143. http://geodesic.mathdoc.fr/item/UZERU_1989_1_a11/

[1] Ya. S. Podstrigach, Yu. M. Kolyano, Obobschennaya termomekhanika, Naukova dumka, Kiev, 1976, 312 pp.

[2] V. S. Sarkisyan, Nekotorye zadachi matematicheskoi teorii uprugosti anizotropnogo tela, Izd-vo Erevan. un-ta, Erevan, 1976 | MR

[3] J. Mamrilla, A. Mamrillova, V. Sarkisian, Nlektore problemy matematickey teorie pruznosti anlzotropneho a nehomogenneho telesa, Univerzita Komenskeho, 1988, 328 pp.