Generalization of a Mendeleeff problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work for the polynomials $$P_n(x)=a_0+\sum\limits^m_{k=1}x^{\gamma_k}\sum\limits_{v=1}^{\mu_k-1}a_{k,v}(\ln x)^v$$ with $$||P_n ||_{L^2(0, 1)}=M, \mu_k\in N, k=1,2,\dots,m,~ \sum\limits_{k=1}^m\mu_k=n,$$ the problem of estimation of the coefficients $a$ is solved. Also the explicit form of the extremal polynom is given.
@article{UZERU_1988_1_a0,
author = {G. V. Badalyan and V. M. Edigarian},
title = {Generalization of a {Mendeleeff} problem},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--10},
publisher = {mathdoc},
number = {1},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1988_1_a0/}
}
TY - JOUR AU - G. V. Badalyan AU - V. M. Edigarian TI - Generalization of a Mendeleeff problem JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1988 SP - 3 EP - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_1988_1_a0/ LA - ru ID - UZERU_1988_1_a0 ER -
G. V. Badalyan; V. M. Edigarian. Generalization of a Mendeleeff problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 3-10. http://geodesic.mathdoc.fr/item/UZERU_1988_1_a0/