Generalization of a Mendeleeff problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work for the polynomials $$P_n(x)=a_0+\sum\limits^m_{k=1}x^{\gamma_k}\sum\limits_{v=1}^{\mu_k-1}a_{k,v}(\ln x)^v$$ with $$||P_n ||_{L^2(0, 1)}=M, \mu_k\in N, k=1,2,\dots,m,~ \sum\limits_{k=1}^m\mu_k=n,$$ the problem of estimation of the coefficients $a$ is solved. Also the explicit form of the extremal polynom is given.
@article{UZERU_1988_1_a0,
     author = {G. V. Badalyan and V. M. Edigarian},
     title = {Generalization of a {Mendeleeff} problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--10},
     publisher = {mathdoc},
     number = {1},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1988_1_a0/}
}
TY  - JOUR
AU  - G. V. Badalyan
AU  - V. M. Edigarian
TI  - Generalization of a Mendeleeff problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1988
SP  - 3
EP  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1988_1_a0/
LA  - ru
ID  - UZERU_1988_1_a0
ER  - 
%0 Journal Article
%A G. V. Badalyan
%A V. M. Edigarian
%T Generalization of a Mendeleeff problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1988
%P 3-10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1988_1_a0/
%G ru
%F UZERU_1988_1_a0
G. V. Badalyan; V. M. Edigarian. Generalization of a Mendeleeff problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1988), pp. 3-10. http://geodesic.mathdoc.fr/item/UZERU_1988_1_a0/

[1] A. A. Markoff, “Mémoire sur la transformation des séries peu convergentes en séries très convergentes”, Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg, 52 (1890), 1–24

[2] S. Bernstein, “Leçons sur les proprietés extremales et la meilleure approximation des fonctions analytiques d'une variable relle”, Collection Borel, Gauthier-Villar, Paris, 1926, 213 pp. | Zbl

[3] L. Schwartz, Étude des sommes d'exponentielles, Hermann, Paris, 1959 | MR | Zbl