$\omega$-perfect graphs
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1987), pp. 9-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The idea of $\omega$-perfect graph is introduced. Several classes of $\omega$-perfect graphs are described, but the question on describing of the whole class of $\omega$-perfect graphs is not clear yet. Vertices colouring algorithm is suggested for graphs containing no even number of holes, where the number of used colours does not overwhelm the double chromatic number.
@article{UZERU_1987_3_a1,
     author = {S. Y. Markosyan and G. S. Gasparian},
     title = {$\omega$-perfect graphs},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {9--15},
     publisher = {mathdoc},
     number = {3},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1987_3_a1/}
}
TY  - JOUR
AU  - S. Y. Markosyan
AU  - G. S. Gasparian
TI  - $\omega$-perfect graphs
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1987
SP  - 9
EP  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1987_3_a1/
LA  - ru
ID  - UZERU_1987_3_a1
ER  - 
%0 Journal Article
%A S. Y. Markosyan
%A G. S. Gasparian
%T $\omega$-perfect graphs
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1987
%P 9-15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1987_3_a1/
%G ru
%F UZERU_1987_3_a1
S. Y. Markosyan; G. S. Gasparian. $\omega$-perfect graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1987), pp. 9-15. http://geodesic.mathdoc.fr/item/UZERU_1987_3_a1/

[1] Berzh K., Teoriya grafov i ee primenenie, Izd-vo inostr. lit., M., 1962, 320 pp. | MR

[2] F. Kharari, Teoriya grafov, Mir, M., 1973, 300 pp.

[3] D. J. Rose, “Triangulated Graphs and the Elimination Process”, J. Math. Anal. Appl., 32 (1970), 597–609 | DOI | MR | Zbl

[4] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Elsevier B.V., Amsterdam, 2004 | MR | Zbl

[5] F. Gavrie, “Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph SIAM”, J. Comput., 1:2 (1972), 180–187 | MR

[6] A. G. Markosyan, I. A. Karapetyan, “O sovershennykh grafakh”, DAN Arm. SSR, XIII:5 (1976), 292–296