Casimir effect for conductive sphere. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1987), pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The vacuum electromagnetic field perturbated by a perfect conductive sphere has been investigated. The energy-momentum tensor has been shown to satisfy the hydrodynamic equations. The components of this tensor have been calculated.
@article{UZERU_1987_1_a9,
     author = {L. Sh. Grigoryan and A. A. Saharian},
     title = {Casimir effect for conductive sphere. {II}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {61--68},
     publisher = {mathdoc},
     number = {1},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1987_1_a9/}
}
TY  - JOUR
AU  - L. Sh. Grigoryan
AU  - A. A. Saharian
TI  - Casimir effect for conductive sphere. II
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1987
SP  - 61
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1987_1_a9/
LA  - ru
ID  - UZERU_1987_1_a9
ER  - 
%0 Journal Article
%A L. Sh. Grigoryan
%A A. A. Saharian
%T Casimir effect for conductive sphere. II
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1987
%P 61-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1987_1_a9/
%G ru
%F UZERU_1987_1_a9
L. Sh. Grigoryan; A. A. Saharian. Casimir effect for conductive sphere. II. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1987), pp. 61-68. http://geodesic.mathdoc.fr/item/UZERU_1987_1_a9/

[1] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika, v. 2, Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978, 375 | MR

[2] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Kvantovye effekty v intensivnykh vneshnikh polyakh (metody i rezultaty, ne svyazannye s teoriei vozmuschenii), Atomizdat, M., 1980

[3] B. S. De Vitt, Obschaya teoriya otnositelnosti, eds. S. Khoking, V. Izrael, Mir, M., 1983, 296–362 | MR

[4] T. H. Boyer, “Quantum Electromagntetic Zero-point Energy of a Conducting Spherical Shell and the Casimir Model for a Charged Particle”, Phys. Rev., 174:5 (1968), 1764 | DOI

[5] B. Davies, “Quantum Electromagnetic Zero-point Energy of a Conducting Spherical Shell”, J. Math. Phys., 13:9 (1972), 1324 | DOI

[6] K. A. Milton, L. L. De Raad, J. Schwinger, Ann. Phys., 115 (1978), 388 | DOI | MR

[7] I. Brevik, H. Kolbenstvedt, “Electromagnetic Casimir Densities in Dielectric Spherical Media”, Ann. Phys., 149:2 (1983), 237 | DOI

[8] I. Brevik, H. Kolbenstvedt, “Casimir Stress in Spherical Media when $\varepsilon\cdot\mu=1$”, Can. J. Phys., 62:8 (1984), 805 | DOI

[9] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR | Zbl

[10] Dzh. Dzhekson, Klassicheskaya elektrodinamika, Mir, M., 1965, 702 pp.

[11] M. A. Evgrafov, Analiticheskie funktsii, Nauka, M., 1968 | MR | Zbl

[12] R. Balian, B. Duplantier, “Electromagnetic Waves Near Perfect Conductors. II. Casimir Effect”, Ann. Physics, 112 (1978), 165–208 | DOI | MR