On an approach to the solution of the problem for elastic plane with infinite piece homogeneous inclusion
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1985), pp. 35-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is solved for an elastic plane containing an infinite piecewise homogeneous elastic inclusion of a sufficiently small constant thickness. The inclusion consists of two semi-infinite and one finite pieces with different elastic properties. The problem is reduced to solving a system of Fredholm integral equations of the second kind with respect to tangential stresses acting on the finite and semi-infinite sections of the contact between the inclusion and the plane. It is shown that for almost all possible values of elastic and geometric characteristics, the solution of the problem can be obtained by the method of successive approximations.
@article{UZERU_1985_2_a5,
     author = {E. Kh. Grigorian},
     title = {On an approach to the solution of the problem for elastic plane with infinite piece homogeneous inclusion},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {35--40},
     publisher = {mathdoc},
     number = {2},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1985_2_a5/}
}
TY  - JOUR
AU  - E. Kh. Grigorian
TI  - On an approach to the solution of the problem for elastic plane with infinite piece homogeneous inclusion
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1985
SP  - 35
EP  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1985_2_a5/
LA  - ru
ID  - UZERU_1985_2_a5
ER  - 
%0 Journal Article
%A E. Kh. Grigorian
%T On an approach to the solution of the problem for elastic plane with infinite piece homogeneous inclusion
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1985
%P 35-40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1985_2_a5/
%G ru
%F UZERU_1985_2_a5
E. Kh. Grigorian. On an approach to the solution of the problem for elastic plane with infinite piece homogeneous inclusion. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1985), pp. 35-40. http://geodesic.mathdoc.fr/item/UZERU_1985_2_a5/

[1] V. S. Sarkisyan, E. X. Grigoryan, S. S. Shaginyan, “Ob odnoi zadache dlya uprugoi ploskosti s kusochno-odnorodnym beskonechnym uprugim vklyucheniem”, Vsesoyuz. semin. po teor. uprug. neodnorod. tela. Tezisy dokl. (Tsakhkadzor), Er., 1981

[2] E. Kh. Grigoryan, “Peredacha nagruzki ot kusochno-odnorodnoi beskonechnoi nakladki k uprugoi poluploskosti”, Uchenye zapiski EGU, 1979, no. 3

[3] V. S. Sarkisyan, E. X. Grigoryan, S. S. Shaginyan, “O dvukh zadachakh dlya uprugoi ploskosti s beskonechnym kusochno-odnorodnym vklyucheniem”, Uchenye zapiski EGU, 1981, no. 1

[4] V. S. Sarkisyan, Kontaktnye zadachi dlya poluploskostei i polos s uprugimi nakladkami, Izd-vo EGU, Er., 1983, 259 pp.