Baťova prvočísla
Učitel matematiky, Tome 31 (2023) no. 3, pp. 178-182.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A new class of prime numbers - Baťa primes - is introduced. A positive integer is called a Baťa prime of class k if it ends with at least k 9s. We prove that for any positive integer k there exist infinitely many Baťa primes of class k. Some generalizations of this statement are given as well.
@article{UM_2023__31_3_a2,
     author = {K\v{r}{\'\i}\v{z}ek, Michal},
     title = {Ba\v{t}ova prvo\v{c}{\'\i}sla},
     journal = {U\v{c}itel matematiky},
     pages = {178--182},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2023},
     language = {cz},
     url = {http://geodesic.mathdoc.fr/item/UM_2023__31_3_a2/}
}
TY  - JOUR
AU  - Křížek, Michal
TI  - Baťova prvočísla
JO  - Učitel matematiky
PY  - 2023
SP  - 178
EP  - 182
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UM_2023__31_3_a2/
LA  - cz
ID  - UM_2023__31_3_a2
ER  - 
%0 Journal Article
%A Křížek, Michal
%T Baťova prvočísla
%J Učitel matematiky
%D 2023
%P 178-182
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UM_2023__31_3_a2/
%G cz
%F UM_2023__31_3_a2
Křížek, Michal. Baťova prvočísla. Učitel matematiky, Tome 31 (2023) no. 3, pp. 178-182. http://geodesic.mathdoc.fr/item/UM_2023__31_3_a2/