Baťova prvočísla
Učitel matematiky, Tome 31 (2023) no. 3, pp. 178-182
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A new class of prime numbers - Baťa primes - is introduced. A positive integer is called a Baťa prime of class k if it ends with at least k 9s. We prove that for any positive integer k there exist infinitely many Baťa primes of class k. Some generalizations of this statement are given as well.
@article{UM_2023__31_3_a2,
author = {K\v{r}{\'\i}\v{z}ek, Michal},
title = {Ba\v{t}ova prvo\v{c}{\'\i}sla},
journal = {U\v{c}itel matematiky},
pages = {178--182},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {2023},
language = {cz},
url = {http://geodesic.mathdoc.fr/item/UM_2023__31_3_a2/}
}
Křížek, Michal. Baťova prvočísla. Učitel matematiky, Tome 31 (2023) no. 3, pp. 178-182. http://geodesic.mathdoc.fr/item/UM_2023__31_3_a2/