Znovu o pravoúhlém trojúhelníku
Učitel matematiky, Tome 24 (2016) no. 1, pp. 61-64.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the first part of the article the proof of the following theorem is given: Let point $S$ be the middle of $AB$ in the triangle $ABC$, point $O$ the intersection of $AB$ and the axis of angle $ACB$, point $P$ the foot of the perpendicular from $C$ on $AB$. If angles $ACS, SCO, OCP, PCB$ are equal, then the angle $BCA$ is the right one. In the second part, the area of right angle triangle using only the length of the axis of the right angle and of the median is derived.
Classification : 14H50
@article{UM_2016__24_1_a5,
     author = {Calda, Emil},
     title = {Znovu o pravo\'uhl\'em troj\'uheln{\'\i}ku},
     journal = {U\v{c}itel matematiky},
     pages = {61--64},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     language = {cz},
     url = {http://geodesic.mathdoc.fr/item/UM_2016__24_1_a5/}
}
TY  - JOUR
AU  - Calda, Emil
TI  - Znovu o pravoúhlém trojúhelníku
JO  - Učitel matematiky
PY  - 2016
SP  - 61
EP  - 64
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UM_2016__24_1_a5/
LA  - cz
ID  - UM_2016__24_1_a5
ER  - 
%0 Journal Article
%A Calda, Emil
%T Znovu o pravoúhlém trojúhelníku
%J Učitel matematiky
%D 2016
%P 61-64
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UM_2016__24_1_a5/
%G cz
%F UM_2016__24_1_a5
Calda, Emil. Znovu o pravoúhlém trojúhelníku. Učitel matematiky, Tome 24 (2016) no. 1, pp. 61-64. http://geodesic.mathdoc.fr/item/UM_2016__24_1_a5/