Nejkratší spojnice vrcholů čtverce
Učitel matematiky, Tome 21 (2013) no. 4, pp. 193-201
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The article concerns the following problem: Given square $ABCD$ with the side of 1. Find points $E,F$ so that the sum $l=|AE|+|DE|+|EF|+|BF|+|CF|$ is the smallest possible. Four solutions are given which are examples of the connection between several mathematical disciplines (geometry, algebra and calculus). The article concludes with a note on the history of the presented problem (leading to P. Fermat and others).
Classification :
97G40
@article{UM_2013__21_4_a0,
author = {Hrub\'y, Dag and Ka\v{s}parov\'a, Martina},
title = {Nejkrat\v{s}{\'\i} spojnice vrchol\r{u} \v{c}tverce},
journal = {U\v{c}itel matematiky},
pages = {193--201},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2013},
language = {cz},
url = {http://geodesic.mathdoc.fr/item/UM_2013__21_4_a0/}
}
Hrubý, Dag; Kašparová, Martina. Nejkratší spojnice vrcholů čtverce. Učitel matematiky, Tome 21 (2013) no. 4, pp. 193-201. http://geodesic.mathdoc.fr/item/UM_2013__21_4_a0/