Jak se také dá poznat pravoúhlý trojúhelník
Učitel matematiky, Tome 21 (2013) no. 3, pp. 159-161
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The author presents a proof that when given triangle $ABC$, point $P \neq S$ is a foot of a perpendicular from $C$ on $AB$, and $S$ is the middle of $AB$, then if angle $ACS$ equals angle $PCB$, then angle $BCA$ is a right one.
Classification :
97G40
@article{UM_2013__21_3_a2,
author = {Calda, Emil},
title = {Jak se tak\'e d\'a poznat pravo\'uhl\'y troj\'uheln{\'\i}k},
journal = {U\v{c}itel matematiky},
pages = {159--161},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2013},
language = {cz},
url = {http://geodesic.mathdoc.fr/item/UM_2013__21_3_a2/}
}
Calda, Emil. Jak se také dá poznat pravoúhlý trojúhelník. Učitel matematiky, Tome 21 (2013) no. 3, pp. 159-161. http://geodesic.mathdoc.fr/item/UM_2013__21_3_a2/