On sequences of elementary transformations in the integer partitions lattice
    
    
  
  
  
      
      
      
        
Ural mathematical journal, Tome 9 (2023) no. 2, pp. 36-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An integer partition, or simply, a partition is a nonincreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of nonnegative integers that contains only a finite number of nonzero components. The length $\ell(\lambda)$ of a partition $\lambda$ is the number of its nonzero components. For convenience, a partition $\lambda$ will often be written in the form $\lambda=(\lambda_1, \dots, \lambda_t)$, where $t\geq\ell(\lambda)$; i.e., we will omit the zeros, starting from some zero component, not forgetting that the sequence is infinite. Let there be natural numbers $i,j\in\{1,\dots,\ell(\lambda)+1\}$ such that (1) $\lambda_i-1\geq \lambda_{i+1}$;  (2) $\lambda_{j-1}\geq \lambda_j+1$; (3) $\lambda_i=\lambda_j+\delta$, where $\delta\geq2$. We will say that the partition $\eta={(\lambda_1, \dots, \lambda_i-1, \dots, \lambda_j+1, \dots, \lambda_n)}$ is obtained from a partition $\lambda=(\lambda_1, \dots, \lambda_i, \dots, \lambda_j, \dots, \lambda_n)$ by an elementary transformation of the first type. Let $\lambda_i-1\geq \lambda_{i+1}$, where $i\leq \ell(\lambda)$. A transformation that replaces $\lambda$ by $\eta=(\lambda_1, \dots, \lambda_{i-1}, \lambda_i-1, \lambda_{i+1}, \dots)$ will be called an elementary transformation of the second type. The authors showed earlier that a partition $\mu$ dominates a partition $\lambda$ if and only if $\lambda$ can be obtained from $\mu$ by a finite number (possibly a zero one) of elementary transformations of the pointed types. Let $\lambda$ and $\mu$ be two arbitrary partitions such that $\mu$ dominates $\lambda$. This work aims to study the shortest sequences of elementary transformations from $\mu$ to $\lambda$. As a result, we have built an algorithm that finds all the shortest sequences of this type.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Ferrers diagram, integer partitions lattice, elementary transformation.
Mots-clés : integer partition
                    
                  
                
                
                Mots-clés : integer partition
@article{UMJ_2023_9_2_a2,
     author = {Vitaly A. Baranskii and Tatiana A. Senchonok},
     title = {On sequences of elementary transformations in the integer partitions lattice},
     journal = {Ural mathematical journal},
     pages = {36--45},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a2/}
}
                      
                      
                    TY - JOUR AU - Vitaly A. Baranskii AU - Tatiana A. Senchonok TI - On sequences of elementary transformations in the integer partitions lattice JO - Ural mathematical journal PY - 2023 SP - 36 EP - 45 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a2/ LA - en ID - UMJ_2023_9_2_a2 ER -
Vitaly A. Baranskii; Tatiana A. Senchonok. On sequences of elementary transformations in the integer partitions lattice. Ural mathematical journal, Tome 9 (2023) no. 2, pp. 36-45. http://geodesic.mathdoc.fr/item/UMJ_2023_9_2_a2/