Restrained double monophonic number of a graph
Ural mathematical journal, Tome 5 (2019) no. 2, pp. 55-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a connected graph $G$ of order at least two, a double monophonic set $S$ of a graph $G$ is a restrained double monophonic set if either $S=V$ or the subgraph induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained double monophonic set of $G$ is the restrained double monophonic number of $G$ and is denoted by $dm_{r}(G)$. The restrained double monophonic number of certain classes graphs are determined. It is shown that for any integers $a,\, b,\, c$ with $3 \leq a \leq b \leq c$, there is a connected graph $G$ with $m(G) = a$, $m_r(G) = b$ and $dm_{r}(G) = c$, where $m(G)$ is the monophonic number and $m_r(G)$ is the restrained monophonic number of a graph $G$.
Keywords: Monophonic set, Restrained monophonic set, Restrained monophonic number, Restrained double monophonic set, Restrained double monophonic number.
@article{UMJ_2019_5_2_a4,
     author = {A. P. Santhakumaran and K. Ganesamoorthy},
     title = {Restrained double monophonic number of a graph},
     journal = {Ural mathematical journal},
     pages = {55--63},
     year = {2019},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a4/}
}
TY  - JOUR
AU  - A. P. Santhakumaran
AU  - K. Ganesamoorthy
TI  - Restrained double monophonic number of a graph
JO  - Ural mathematical journal
PY  - 2019
SP  - 55
EP  - 63
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a4/
LA  - en
ID  - UMJ_2019_5_2_a4
ER  - 
%0 Journal Article
%A A. P. Santhakumaran
%A K. Ganesamoorthy
%T Restrained double monophonic number of a graph
%J Ural mathematical journal
%D 2019
%P 55-63
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a4/
%G en
%F UMJ_2019_5_2_a4
A. P. Santhakumaran; K. Ganesamoorthy. Restrained double monophonic number of a graph. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 55-63. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a4/

[1] Abdollahzadeh Ahangar H., Samodivkin V., Sheikholeslami S. M. and Abdollah Khodkar, “The Restrained Geodetic Number of a Graph”, Bull. Malays. Math. Sci. Soc., 38. (2015), 1143–1155 | DOI | MR | Zbl

[2] Buckley F., Harary F., Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990, 335 pp. | MR | Zbl

[3] Chartrand G., Harary F. and Zhang P., “On the geodetic number of a graph”, Networks, 39:1 (2002), 1–6 | DOI | MR | Zbl

[4] Chartrand G., Johns G. L., and Zhang P., “On the detour number and geodetic number of a graph”, Ars Combin., 72 (2004), 3–15 | MR | Zbl

[5] Harary F., Graph Theory, Wesley, Addison, 1969 | MR | Zbl

[6] Harary F., Loukakis E. and Tsouros C., “The geodetic number of a graph”, Math. Comput. Modelling, 17:11 (1993), 89–95 | DOI | MR | Zbl

[7] Santhakumaran A. P. and Jebaraj T., “Double geodetic number of a graph”, Discuss. Math. Graph Theory, 32:1 (2012), 109–119 | DOI | MR | Zbl

[8] Santhakumaran A. P. , Titus P. and Ganesamoorthy K., “On the monophonic number of a graph”, J. Appl. Math. Inform., 32:1–2 (2014), 255–266 | DOI | MR | Zbl

[9] Santhakumaran A. P. and Venakata Raghu T., “Double monophonic number of a graph”, Int. J. Comput. Appl. Math., 11:1 (2016), 21–26 https://www.ripublication.com/ijcam16/ijcamv11n1_03.pdf | MR

[10] Santhakumaran A. P. and Venakata Raghu T., “Upper double monophonic number of a graph”, Proyecciones, 37:2 (2018), 295–304 | DOI | MR

[11] Santhakumaran A. P. and Venakata Raghu T., “Connected double monophonic number of a graph”, Int. J. Math. Comb., 2018, Special Issue 1, 54–60 | MR