@article{UMJ_2019_5_2_a0,
author = {Nikolai I. Chernykh},
title = {Interpolating wavelets on the sphere},
journal = {Ural mathematical journal},
pages = {3--12},
year = {2019},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a0/}
}
Nikolai I. Chernykh. Interpolating wavelets on the sphere. Ural mathematical journal, Tome 5 (2019) no. 2, pp. 3-12. http://geodesic.mathdoc.fr/item/UMJ_2019_5_2_a0/
[1] Arfaoui S., Rezgui I., Mabrouk A. B., Wavelet Analysis on the Sphere: Spheroidal Wavelets, Berlin, 2017, 144 pp. | MR | Zbl
[2] Askari-Hemmat A., Dehghan M. A., Skopina M., “Polynomial Wavelet-Type Expansions on the Sphere”, Math. Notes, 74:2 (2003), 278–285 | DOI | MR
[3] Chernykh N. I., Subbotin Yu. N., “Interpolating-orthogonal wavelet systems”, Proc. Steklov Inst. Math., 264, Suppl. 1 (2009), 107–115 | DOI | MR
[4] Dahlke S., Dahmen W., Weinreich I., Schmitt E., “Multiresolution analysis and wavelets on $\mathbb{S}^2$ and $\mathbb{S}^3$”, Numer. Funct. Anal. Optim., 16:1–2 (1995), 19–41 | DOI | MR | Zbl
[5] Dai F., “Characterizations of function spaces on the sphere using frames”, Trans. Amer. Math. Soc., 359:2 (2007), 567–589 | DOI | MR | Zbl
[6] Farkov Yu., “B-spline wavelets on the sphere”, Proc. of the Intern. Workshop “Self-Similar Systems”, v. 30, 1999, 79–82 | MR | Zbl
[7] Freeden W., Schreiner M., “Orthogonal and nonorthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere”, Constr. Approx., 14:4 (1998), 493–515 | DOI | MR | Zbl
[8] Schröder P., Sweldens W., “Spherical wavelets: Efficiently representing functions on the sphere.”, Wavelets in the Geosciences, Lect. Notes in Earth Sci., 90, 1995, 158–188 | DOI
[9] Skopina M., Polynomial Expansions of Continuous Functions on the Sphere and on the Disk, IMI Research Reports, Vol. 5, Department of Mathematics, University of South Carolina, 2001, 13 pp. http://imi.cas.sc.edu/django/site_media/media/papers/2001/2001_05.pdf
[10] Subbotin Yu. N., Chernykh N. I., “Interpolation wavelets in boundary value problems”, Proc. Steklov Inst. Math., 300, Suppl. 1 (2018.), 172–183 | DOI | MR