Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 101-108

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a quasi-linear parabolic equation with a small parameter multiplying a higher derivative is considered in two cases when the solution of the limit problem has a point of gradient catastrophe. Asymptotic solutions are found by using the Cole-Hopf transform. The integrals determining the asymptotic solutions correspond to the Lagrange singularities of type $A$ and the boundary singularities of type $B$. The behavior of the asymptotic solutions is described in terms of the weighted Sobolev spaces.
Keywords: quasi-linear parabolic equation, singular points, asymptotic solutions, Whitney fold singularity, Il’in’s universal solution, weighted Sobolev spaces.
Mots-clés : Cole-Hopf transform
@article{UMJ_2019_5_1_a9,
     author = {Sergey V. Zakharov},
     title = {Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types},
     journal = {Ural mathematical journal},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a9/}
}
TY  - JOUR
AU  - Sergey V. Zakharov
TI  - Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types
JO  - Ural mathematical journal
PY  - 2019
SP  - 101
EP  - 108
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a9/
LA  - en
ID  - UMJ_2019_5_1_a9
ER  - 
%0 Journal Article
%A Sergey V. Zakharov
%T Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types
%J Ural mathematical journal
%D 2019
%P 101-108
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a9/
%G en
%F UMJ_2019_5_1_a9
Sergey V. Zakharov. Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 101-108. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a9/