A new root-finding algorithm using exponential series
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 83-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we present a new root-finding algorithm to compute a non-zero real root of the transcendental equations using exponential series. Indeed, the new proposed algorithm is based on the exponential series and in which Secant method is special case. The proposed algorithm produces better approximate root than bisection method, regula-falsi method, Newton-Raphson method and secant method. The implementation of the proposed algorithm in Matlab and Maple also presented. Certain numerical examples are presented to validate the efficiency of the proposed algorithm. This algorithm will help to implement in the commercial package for finding a real root of a given transcendental equation.
Keywords: exponential series, Secant method.
Mots-clés : algebraic equations, transcendental equations
@article{UMJ_2019_5_1_a7,
     author = {Srinivasarao Thota},
     title = {A new root-finding algorithm using exponential series},
     journal = {Ural mathematical journal},
     pages = {83--90},
     year = {2019},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a7/}
}
TY  - JOUR
AU  - Srinivasarao Thota
TI  - A new root-finding algorithm using exponential series
JO  - Ural mathematical journal
PY  - 2019
SP  - 83
EP  - 90
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a7/
LA  - en
ID  - UMJ_2019_5_1_a7
ER  - 
%0 Journal Article
%A Srinivasarao Thota
%T A new root-finding algorithm using exponential series
%J Ural mathematical journal
%D 2019
%P 83-90
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a7/
%G en
%F UMJ_2019_5_1_a7
Srinivasarao Thota. A new root-finding algorithm using exponential series. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 83-90. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a7/

[1] Datta B. N., Lecture Notes on Numerical Solution of Root–Finding Problems, 2012 http://www.math.niu.edu/~dattab/math435.2009/ROOT-FINDING.pdf

[2] Chen J., “New modified regula falsi method for nonlinear equations”, Appl. Math. Comput., 184:2 (2007), 965–971 | DOI | MR | Zbl

[3] Noor M. A., Noor K. I., Khan W. A., Ahmad F., “On iterative methods for nonlinear equations”, Appl. Math. Comput., 183:1 (2006), 128–133 | DOI | MR | Zbl

[4] Noor M. A., Ahmad F., “Numerical comparison of iterative methods for solving nonlinear equations”, Appl. Math. Comput., 180:1 (2006), 167–172 | DOI | MR | Zbl

[5] Ehiwario J. C., Aghamie S. O., “Comparative study of bisection, Newton-Raphson and secant methods of root–finding problems”, IOSR J. of Engineering, 4:4 (2014), 1–7

[6] Hussain S., Srivastav V. K., Thota S., “Assessment of interpolation methods for solving the real life problem”, Int. J. Math. Sci. Appl., 5:1 (2015), 91–95 http://ijmsa.yolasite.com/resources/12.pdf

[7] Sagraloff M., Mehlhorn K., Computing Real Roots of Real Polynomials, 2013, arXiv: 1308.4088v2 [cs.SC]

[8] Thota S., Srivastav V. K., “Quadratically convergent algorithm for computing real root of non-linear transcendental equations”, BMC Research Notes, 11 (2018), art. no. 909 | DOI

[9] Thota S., Srivastav V. K., “Interpolation based hybrid algorithm for computing real root of non-linear transcendental functions”, Int. J. Math. Comput. Research, 2:11 (2014), 729–735 http://ijmcr.in/index.php/ijmcr/article/view/182/181

[10] Abbasbandy S., Liao S., “A new modification of false position method based on homotopy analysis method”, Appl. Math. Mech., 29:2 (2008), 223–228 | DOI | MR | Zbl

[11] Srivastav V. K., Thota S., Kumar M., “A new trigonometrical algorithm for computing real root of non-linear transcendental equations”, Int. J. Appl. Comput. Math., 5 (2019), art. no. 44 | DOI | MR