@article{UFA_2024_16_4_a5,
author = {I. Kh. Musin},
title = {Embedding theorems for subspaces in spaces of fast decaying functions},
journal = {Ufa mathematical journal},
pages = {76--82},
year = {2024},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/}
}
I. Kh. Musin. Embedding theorems for subspaces in spaces of fast decaying functions. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 76-82. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/
[1] I.M. Gel'fand, G.E. Shilov, Generalized functions, v. 2, Spaces of fundamental and generalized functions, Academic Press, New York, 1968 | MR | Zbl
[2] I.M. Gel'fand, G.E. Shilov, Generalized functions, v. 3, Theory of differential equations, Academic Press, New York, 1967 | MR | Zbl
[3] B.L. Gurevich, “New spaces of fundamental and generalized function spaces and the Cauchy problem for finite–difference systems”, Dokl. Akad. Nauk SSSR, 99:6 (1954), 893–896 (in Russian)
[4] B.L. Gurevich, “New types of fundamental and generalized function spaces and the Cauchy problem for systems of difference equations involving differential operations”, Dokl. Akad. Nauk SSSR, 108:6 (1956), 1001–1003 (in Russian) | MR | Zbl
[5] B.L. Gurevich, New types of spaces of fundamental and generalized functions and the Cauchy problem for operator equations, PhD thesis, Kharkov, 1956 (in Russian) | MR
[6] J. Chung, S–Y. Chung, D. Kim, “Characterizations of the Gelfan — Shilov spaces via Fourier transforms”, Proc. Am. Math. Soc., 124:7 (1996), 2101–2108 | DOI | MR | Zbl
[7] R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton, N. J., 1970 | MR | Zbl
[8] I.Kh. Musin, “On a space of entire functions rapidly decreasing on ${\mathbb R}^n$ and its Fourier transform”, Concr. Oper., 2:1 (2015), 120–138 | MR | Zbl
[9] A.V. Lutsenko, I.Kh. Musin, R.S. Yulmukhametov, “On Gelfand — Shilov spaces”, Ufa Math. J., 15:3 (2023), 88–96 | DOI | MR | Zbl
[10] I.Kh. Musin, “On a Hilbert space of entire functions”, Ufa Math. J., 9:3 (2017), 109–117 | DOI | MR | Zbl