Embedding theorems for subspaces in spaces of fast decaying functions
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 76-82
Voir la notice de l'article provenant de la source Math-Net.Ru
By means of the family ${\mathfrak M} = \{{M_{\nu}}\}_{\nu=1}^{\infty}$ of separately radial convex functions $M_{\nu}: {\mathbb{R}}^n \to {\mathbb{R}}$ we define the space $GS({\mathfrak M})$ of type $W_M$, which is a natural generalization of the space $W_M$ introduced in works by B.L. Gurevich, I.M. Gelfand, and G.E. Shilov. By a certain rule, each function $M_{\nu}$ is associated with a non–negative separately radial convex function $h_{\nu}$ in ${\mathbb{R}}^n$. The properties of the functions $h_{\nu}$ allows one to form, by the family ${\mathcal H} = \{{h_{\nu}}\}_{\nu=1}^{\infty}$, the space
${\mathbb S}_{\mathcal H}$, which is the inner inductive limit of countably–normed spaces ${\mathbb S}(h_{\nu})$ of the functions $f \in C^{\infty}({\mathbb{R}}^n)$ with the finite norms
$$
\| f \|_{m, \nu}
= \sup_{x \in {\mathbb{R}}^n, \beta \in {\mathbb{Z}}_+^n, \atop \alpha \in {\mathbb{Z}}_+^n: \| \alpha \| \le m}
\frac {\| x^{\beta}(D^{\alpha}f)(x) \|}{\beta! e^{-h_{\nu}(\beta)}}, \qquad m \in {\mathbb{Z}}_+ .
$$ We consider the problem on finding conditions on ${\mathfrak M}$, which ensure
continuous embedding of the spaces
$GS({\mathfrak M})$ and ${\mathbb S}_{\mathcal H}$ one to the other.
Keywords:
Gelfand–Shilov space of type $W_M$, convex functions.
@article{UFA_2024_16_4_a5,
author = {I. Kh. Musin},
title = {Embedding theorems for subspaces in spaces of fast decaying functions},
journal = {Ufa mathematical journal},
pages = {76--82},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/}
}
I. Kh. Musin. Embedding theorems for subspaces in spaces of fast decaying functions. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 76-82. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/