Embedding theorems for subspaces in spaces of fast decaying functions
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 76-82

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of the family ${\mathfrak M} = \{{M_{\nu}}\}_{\nu=1}^{\infty}$ of separately radial convex functions $M_{\nu}: {\mathbb{R}}^n \to {\mathbb{R}}$ we define the space $GS({\mathfrak M})$ of type $W_M$, which is a natural generalization of the space $W_M$ introduced in works by B.L. Gurevich, I.M. Gelfand, and G.E. Shilov. By a certain rule, each function $M_{\nu}$ is associated with a non–negative separately radial convex function $h_{\nu}$ in ${\mathbb{R}}^n$. The properties of the functions $h_{\nu}$ allows one to form, by the family ${\mathcal H} = \{{h_{\nu}}\}_{\nu=1}^{\infty}$, the space ${\mathbb S}_{\mathcal H}$, which is the inner inductive limit of countably–normed spaces ${\mathbb S}(h_{\nu})$ of the functions $f \in C^{\infty}({\mathbb{R}}^n)$ with the finite norms $$ \| f \|_{m, \nu} = \sup_{x \in {\mathbb{R}}^n, \beta \in {\mathbb{Z}}_+^n, \atop \alpha \in {\mathbb{Z}}_+^n: \| \alpha \| \le m} \frac {\| x^{\beta}(D^{\alpha}f)(x) \|}{\beta! e^{-h_{\nu}(\beta)}}, \qquad m \in {\mathbb{Z}}_+ . $$ We consider the problem on finding conditions on ${\mathfrak M}$, which ensure continuous embedding of the spaces $GS({\mathfrak M})$ and ${\mathbb S}_{\mathcal H}$ one to the other.
Keywords: Gelfand–Shilov space of type $W_M$, convex functions.
@article{UFA_2024_16_4_a5,
     author = {I. Kh. Musin},
     title = {Embedding theorems for subspaces   in spaces of fast decaying functions},
     journal = {Ufa mathematical journal},
     pages = {76--82},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Embedding theorems for subspaces   in spaces of fast decaying functions
JO  - Ufa mathematical journal
PY  - 2024
SP  - 76
EP  - 82
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/
LA  - en
ID  - UFA_2024_16_4_a5
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Embedding theorems for subspaces   in spaces of fast decaying functions
%J Ufa mathematical journal
%D 2024
%P 76-82
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/
%G en
%F UFA_2024_16_4_a5
I. Kh. Musin. Embedding theorems for subspaces   in spaces of fast decaying functions. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 76-82. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a5/