On uniform convergence of semi-analytic solution of Dirichlet problem for dissipative Helmholtz equation in vicinity of boundary of two-dimensional domain
Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 76-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the collocation boundary element method, we propose a semi-analytic approximation of the double-layer potential, which ensures a uniform cubic convergence of the approximate solution to the Dirichlet problem for the Helmholtz equation in a two-dimensional bounded domain or its exterior with a boundary of class $C^5$. In order to calculate integrals on boundary elements, an exact integration over the variable $\rho:=(r^2-d^2)^{1/2}$ is used, where $r$ and $d$ are the distances from the observed point to integration point and to the boundary of the domain, respectively. Under some simplifications we prove that the use of a number of traditional quadrature formulas leads to a violation of the uniform convergence of potential approximations in the vicinity of the boundary of the domain. The theoretical conclusions are confirmed by a numerical solving of the problem in a circular domain.
Keywords: double layer potential, Dirichlet problem, Helmholtz equation, boundary integral equation, almost singular integral, boundary layer phenomenon
Mots-clés : quadrature formula, uniform convergence.
@article{UFA_2023_15_4_a5,
     author = {D. Yu. Ivanov},
     title = {On uniform convergence of semi-analytic solution of {Dirichlet} problem for dissipative {Helmholtz} equation in vicinity of boundary of two-dimensional domain},
     journal = {Ufa mathematical journal},
     pages = {76--99},
     year = {2023},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a5/}
}
TY  - JOUR
AU  - D. Yu. Ivanov
TI  - On uniform convergence of semi-analytic solution of Dirichlet problem for dissipative Helmholtz equation in vicinity of boundary of two-dimensional domain
JO  - Ufa mathematical journal
PY  - 2023
SP  - 76
EP  - 99
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a5/
LA  - en
ID  - UFA_2023_15_4_a5
ER  - 
%0 Journal Article
%A D. Yu. Ivanov
%T On uniform convergence of semi-analytic solution of Dirichlet problem for dissipative Helmholtz equation in vicinity of boundary of two-dimensional domain
%J Ufa mathematical journal
%D 2023
%P 76-99
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a5/
%G en
%F UFA_2023_15_4_a5
D. Yu. Ivanov. On uniform convergence of semi-analytic solution of Dirichlet problem for dissipative Helmholtz equation in vicinity of boundary of two-dimensional domain. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 76-99. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a5/

[1] C.A. Brebbia, J.C.F. Telles, L.C. Wrobel, Boundary element techniques: Theory and applications in engineering, Springer-Verlag, New York, 1984 | MR | MR | Zbl

[2] J. Lv, Y. Miao, H. Zhu, “The distance sinh transformation for the numerical evaluation of nearly singular integrals over curved surface elements”, Comput. Mech., 53:2 (2014), 359–367 | DOI | MR | Zbl

[3] Z. Niu, C. Cheng, H. Zhou, Z. Hu, “Analytic formulations for calculating nearly singular integrals in two-dimensional BEM”, Eng. Anal. Bound. Elem., 31:12 (2007), 949–964 | DOI | Zbl

[4] X.W. Gao, K. Yang, J. Wang, “An adaptive element subdivision technique for evaluation of various 2D singular boundary integrals”, Eng. Anal. Bound. Elem., 32:8 (2008), 692–696 | DOI | Zbl

[5] Y.-M. Zhang, Y. Gu, J.-T. Chen, “Stress analysis for multilayered coating systems using semi-analytical BEM with geometric non-linearities”, Comput. Mech., 47:5 (2011), 493–504 | DOI | MR | Zbl

[6] Y. Gu, W. Chen, B. Zhang, W. Qu, “Two general algorithms for nearly singular integrals in two dimensional anisotropic boundary element method”, Comput. Mech., 53:6 (2014), 1223–1234 | DOI | MR | Zbl

[7] Z. Niu, Z. Hu, C. Cheng, H. Zhou, “A novel semi-analytical algorithm of nearly singular integrals on higher order elements in two dimensional BEM”, Eng. Anal. Bound. Elem., 61 (2015), 42–51 | DOI | MR | Zbl

[8] C. Cheng, D. Pan, Z. Han, M. Wu, Z. Niu, “A state space boundary element method with analytical formulas for nearly singular integrals”, Acta Mech. Solida Sin., 31:4 (2018), 433–444 | DOI

[9] P.A. Krutitskii, V.V. Kolybasova, “Numerical method for the solution of integral equations in a problem with directional derivative for the Laplace equation outside open curves”, Diff. Equat., 52:9 (2016), 1219–1233 | DOI | DOI | MR | Zbl

[10] P.A. Krutitskii, A.D. Fedotova, V.V. Kolybasova, “Quadrature formula for the simple layer potential”, Diff. Equats., 55:9 (2019), 1226–1241 | DOI | DOI | MR | Zbl

[11] P.A. Krutitskii, I.O. Reznichenko, “Quadrature formula for the harmonic double layer potential”, Diff. Equats., 57:7 (2021), 901–920 | DOI | DOI | MR | Zbl

[12] X.-W. Gao, J.-B. Zhang, B.-J. Zheng, C. Zhang, “Element-subdivision method for evaluation of singular integrals over narrow strip boundary elements of super thin and slender structures”, Eng. Anal. Bound. Elem., 66 (2016), 145–154 | DOI | MR | Zbl

[13] J. Zhang, P. Wang, C. Lu, Y. Dong, “A spherical element subdivision method for the numerical evaluation of nearly singular integrals in 3D BEM”, Eng. Computations, 34:6 (2017), 2074–2087 | DOI | MR

[14] Y.P. Gong, C.Y. Dong, Y. Bai, “Evaluation of nearly singular integrals in isogeometric boundary element method”, Eng. Anal. Bound. Elem., 75 (2017), 21–35 | DOI | MR | Zbl

[15] Y. Zhang, Y. Gong, X. Gao, “Calculation of 2D nearly singular integrals over high-order geometry elements using the sinh transformation”, Eng. Anal. Bound. Elem., 60 (2015), 144–153 | DOI | MR | Zbl

[16] D.Yu. Ivanov, “On the solution of plane problems of non-stationary heat conduction by the boundary element collocation method”, Vestnik Tomsk. Gosud. Univ. Matem. Mekh., 50 (2017), 9–29 (in Russian)

[17] D.Yu. Ivanov, “A refinement of the boundary element collocation method near the boundary of domain in the case of two-dimensional problems of non-stationary heat conduction with boundary conditions of the second and third kind”, Vestnik Tomsk. Gosud. Univ. Matem. Mekh., 57 (2019), 5–25 (in Russian) | Zbl

[18] D.Yu. Ivanov, “A refinement of the boundary element collocation method near the boundary of a two-dimensional domain using semianalytic approximation of the double layer heat potential”, Vestnik Tomsk. Gosud. Univ. Matem. Mekh., 65 (2020), 30–52 (in Russian) | Zbl

[19] D.Yu. Ivanov, “On the uniform convergence of approximations of the double layer potential”, Vestnik Udmurt. Univ. Matem. Mekh. Komp'yut. Nauki, 32:1 (2022), 26–43 (in Russian) | MR | Zbl

[20] N. Dunford, J.T. Schwartz, Linear operators, v. 1, General theory, Interscience Publishers, New York, 1958 | MR | Zbl

[21] V.I. Smirnov, A course in higher mathematics, v. 2, Nauka, M., 1974 (in Russian) | MR

[22] D. Colton, R. Kress, Integral equation methods in scattering theory, John Wiley Sons, New York, 1983 | MR | MR | Zbl

[23] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl

[24] D.Yu. Ivanov, “Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel”, Vestnik Tomsk. Gosud. Univ. Matem. Mekh., 38 (2015), 33–45 (in Russian)

[25] V.I. Smirnov, A course of higher mathematics, Part 2, v. 4, Nauka, M., 1981 (in Russian) | MR

[26] I.S. Berezin, N.P. Zhidkov, Methods of computation, v. 1, GIFML, M., 1962 (in Russian) | MR

[27] G.M. Fichtenholz, Differential and integral calculus, v. 2, Fizmatlit, M., 2003 (in Russian)

[28] C. Schneider, “Regularity of the solution to a class of weakly singular Fredholm integral equation of the second kind”, Integr. Equat. Oper. Th., 2:1 (1979), 62–68 | DOI | MR | Zbl

[29] G. Vainikko, A. Pedas, “The properties of solutions of weakly singular integral equations”, J. Austral. Math. Soc. Ser. B, 22:4 (1981), 419–430 | DOI | MR | Zbl

[30] R. Kangro, “On the smoothness of solutions to an integral equation with a kernel having a singularity on a curve”, Acta et Comm. Univ. Tartuensis, 913 (1990), 24–37 | MR | Zbl

[31] A. Pedas, G. Vainikko, “On the regularity of solutions to integral equations with nonsmooth kernels on a union of open intervals”, J. Comput. Appl. Math., 229:2 (2009), 440–451 | DOI | MR | Zbl

[32] A. Pedas, G. Vainikko, “Integral equations with diagonal and boundary singularities of the kernel”, Z. Anal. Anwend., 25:4 (2006), 487–516 | DOI | MR | Zbl

[33] K. Orav-Puurand, A. Pedas, G. Vainikko, “Nystrom type methods for Fredholm integral equations with weak singularities”, J. Comput. Appl. Math., 234:9 (2010), 2848–2858 | DOI | MR | Zbl

[34] V.A. Zorich, Mathematical analysis, v. 2, MCCME, M., 2012 (in Russian)