Mots-clés : Jensen formula
@article{UFA_2023_15_4_a2,
author = {G. G. Braichev and B. N. Khabibullin and V. B. Sherstyukov},
title = {Sylvester problem, coverings by shifts, and uniqueness theorems for entire functions},
journal = {Ufa mathematical journal},
pages = {31--41},
year = {2023},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a2/}
}
TY - JOUR AU - G. G. Braichev AU - B. N. Khabibullin AU - V. B. Sherstyukov TI - Sylvester problem, coverings by shifts, and uniqueness theorems for entire functions JO - Ufa mathematical journal PY - 2023 SP - 31 EP - 41 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a2/ LA - en ID - UFA_2023_15_4_a2 ER -
%0 Journal Article %A G. G. Braichev %A B. N. Khabibullin %A V. B. Sherstyukov %T Sylvester problem, coverings by shifts, and uniqueness theorems for entire functions %J Ufa mathematical journal %D 2023 %P 31-41 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a2/ %G en %F UFA_2023_15_4_a2
G. G. Braichev; B. N. Khabibullin; V. B. Sherstyukov. Sylvester problem, coverings by shifts, and uniqueness theorems for entire functions. Ufa mathematical journal, Tome 15 (2023) no. 4, pp. 31-41. http://geodesic.mathdoc.fr/item/UFA_2023_15_4_a2/
[1] J.J. Sylvester, “A question in the geometry of situation”, Quarterly Journal of Mathematics, 1 (1857), 79 | MR
[2] A.R. Alimov, I.G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Russ. Math. Surv., 74:5 (2019), 775–849 | DOI | DOI | MR | Zbl
[3] H. Jung, “Ueber die kleinste Kugel, die eine räumliche Figur einschliesst”, Journal für die reine und angewandte Mathematik, 123 (1901), 241–257 | MR
[4] H. Rademacher, O. Toeplitz, Numbers and figures. Experiments in mathematical thinking, Princeton Univ. Press, Princeton, NJ, 1994 | MR
[5] V.Yu. Protasov, “Helly theorem and around”, Kvant, 3 (2009), 8–14 (in Russian)
[6] B.Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl
[7] B.N. Khabibullin, Completeness of exponential systems and uniqueness sets, 4th ed. Bashkir State Univ. Publ., Ufa, 2021 (in Russian)
[8] Yu.F. Korobeĭnik, “Maximal and $\gamma$-sufficient sets. Applications to entire functions. I”, Teor. Funkts., Funkts. Anal. Prilozh., 54, 1990, 42–49 (in Russian)
[9] Yu.F. Korobejnik, “Maximal and $\gamma$-sufficient sets. Applications to entire functions. II”, J. Sov. Math., 59:1 (1992), 599–606 | DOI | MR | MR
[10] F. Carlson, “Über ganzwertige Funktionen”, Mathematishe Zeitschrift, 11 (1921), 1–23 | DOI | MR
[11] A.F. Grishin, K.G. Malyutin, Trigonometrically convex functions, South-West Univ. Publ., Kursk, 2015 (in Russian)
[12] V. Azarin, Growth theory of subharmonic functions, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009 | MR | Zbl
[13] B.N. Khabibullin, “Sequences of non-uniqueness for weight spaces of holomorphic functions”, Russ. Math. (Iz. VUZ), 59:4 (2015), 63–70 | DOI | MR | Zbl
[14] B.N. Khabibullin, F.B. Khabibullin, “On the distribution of zero sets of holomorphic functions. III: Converse theorems”, Funct. Anal. Appl., 53:2 (2019), 110–123 | DOI | DOI | MR | Zbl
[15] B.N. Khabibullin, F.B. Khabibullin, “Necessary and Sufficient Conditions for Zero Subsets of Holomorphic Functions with Upper Constraints in Planar Domains”, Lobachevskii Jour. of Math., 42:4 (2021), 800–810 | DOI | MR | Zbl
[16] E.P. Earl, W.K. Hayman, “Smooth majorants for functions of arbitrarily rapid growth”, Math. Proc. Camb. Phil. Soc., 109:3 (1991), 565–569 | DOI | MR | Zbl
[17] G.G. Braichev, Extremal problems in theory of relative growth of convex and entire functions, Habilit. Ths., RUDN Univ., M., 2018 (in Russian)
[18] L.A. Rubel, B.A. Taylor, “A Fourier series method for meromorphic and entire functions”, Bulletin de la S.M.F., 96 (1968), 53–96 | MR | Zbl
[19] G.G. Braichev, V.B. Sherstyukov, “Sharp bounds for asymptotic characteristics of growth of entire functions with zeros on given sets”, J. Math. Sci., 250:3 (2020), 419–453 | DOI | MR | Zbl
[20] G.G. Braichev, “On the connection between the growth of zeros and the decrease of Taylor coefficients of entire functions”, Math. Notes, 113:1 (2023), 27–38 | DOI | DOI | MR | Zbl
[21] B.N. Khabibullin, “Helly's theorem and shifts of sets. II. Support function, exponential systems, entire functions”, Ufa Math. J., 6:4 (2014), 122–134 | DOI | MR | Zbl