On Gelfand–Shilov spaces
Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 88-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we follow the scheme of constructing of Gelfand–Shilov spaces $S_{\alpha}$ and $S^{\beta}$ by means of some family of separately radial weight functions in ${\mathbb R}^n$ and define two spaces of rapidly decreasing infinitely differentiable functions in ${\mathbb R}^n$. One of them, namely, the space ${\mathcal S}_{\mathcal M}$ is an inductive limit of countable-normed spaces \begin{equation*} {\mathcal S}_{\mathcal M_{\nu}} = \bigg\{f \in C^{\infty}({\mathbb{R}}^n): \Vert f \Vert_{m, \nu} = \sup_{x \in {\mathbb{R}}^n, \beta \in {\mathbb{Z}}_+^n, \atop \alpha \in {\mathbb{Z}}_+^n: \vert \alpha \vert \le m} \frac {\vert x^{\beta}(D^{\alpha}f)(x) \vert}{\mathcal M_{\nu}(\beta)} \infty, m \in {\mathbb{Z}}_+ \bigg\}. \end{equation*} Similarly, starting with the normed spaces \begin{equation*} {\mathcal S}_m^{\mathcal M_{\nu}} =\bigg\{f \in C^{\infty}({\mathbb{R}}^n): \rho_{m, \nu}(f) = \sup_{x \in {\mathbb{R}}^n, \alpha \in {\mathbb{Z}}_+^n} \frac {(1+ \Vert x \Vert)^m \vert (D^{\alpha}f)(x) \vert}{\mathcal M_{\nu}(\alpha)} \infty \bigg\} \end{equation*} we introduce the space ${\mathcal S}^{\mathcal M}$. We show that under certain natural conditions on weight functions the Fourier transform establishes an isomorphism between spaces ${\mathcal S}_{\mathcal M}$ and ${\mathcal S}^{\mathcal M}$.
Keywords: Gelfand–Shilov spaces, convex functions.
Mots-clés : Fourier transform
@article{UFA_2023_15_3_a6,
     author = {A. V. Lutsenko and I. Kh. Musin and R. S. Yulmukhametov},
     title = {On {Gelfand{\textendash}Shilov} spaces},
     journal = {Ufa mathematical journal},
     pages = {88--96},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a6/}
}
TY  - JOUR
AU  - A. V. Lutsenko
AU  - I. Kh. Musin
AU  - R. S. Yulmukhametov
TI  - On Gelfand–Shilov spaces
JO  - Ufa mathematical journal
PY  - 2023
SP  - 88
EP  - 96
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a6/
LA  - en
ID  - UFA_2023_15_3_a6
ER  - 
%0 Journal Article
%A A. V. Lutsenko
%A I. Kh. Musin
%A R. S. Yulmukhametov
%T On Gelfand–Shilov spaces
%J Ufa mathematical journal
%D 2023
%P 88-96
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a6/
%G en
%F UFA_2023_15_3_a6
A. V. Lutsenko; I. Kh. Musin; R. S. Yulmukhametov. On Gelfand–Shilov spaces. Ufa mathematical journal, Tome 15 (2023) no. 3, pp. 88-96. http://geodesic.mathdoc.fr/item/UFA_2023_15_3_a6/

[1] G.E. Shilov, “On one quasi-analyticity problem”, DAN SSSR, 102:5 (1955), 893–895 (in Russian) | Zbl

[2] I.M. Gel'fand, G.E. Shilov, “Fourier transforms of rapidly increasing functions and questions of uniqueness of the solution of Cauchy's problem”, Uspekhi Matem. Nauk, 8:6(58) (1953), 3–54 (in Russian) | Zbl

[3] I.M. Gel'fand, G.E. Shilov, Generalized functions, v. 2, Spaces of fundamental and generalized functions, Amer. Math. Soc., Providence, RI, 2016 | MR

[4] I.M. Gel'fand, G.E. Shilov, Generalized functions, v. 3, Theory of differential equations, Amer. Math. Soc., Providence, RI, 2016 | MR

[5] M.A. Soloviev, “Spacelike asymptotic behavior of vacuum expectation values in nonlocal field theory”, Theor. Math. Phys., 52:3 (1982), 854–862 | DOI | MR

[6] R.E. Edwards, Functional analysis. Theory and applications, Holt Rinehart and Winston, New York, 1965 | MR | Zbl

[7] R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1997 | MR | Zbl

[8] V.S. Vladimirov, Methods of theory of functions of many complex variables, Nauka, M., 1964 (in Russian) | MR

[9] I.Kh. Musin, “On a space of entire functions rapidly decreasing on $\mathbb{R}^n$ and its Fourier transform”, Concrete Operators, 1:2 (2015), 120–138 | MR

[10] A.V. Lutsenko, I.Kh. Musin, R.S. Yulmukhametov, “On a class of periodic functions in $\mathbb{R}^n$”, Ufa Math. J., 14:4 (2022), 69–75 | DOI | MR