On a class of hyperbolic equations with third-order integrals
Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 20-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Goursat problem on classification nonlinear second order hyperbolic equations integrable by the Darboux method. In the work we study a class of hyperbolic equations with second order $y$-integral reduced by an differential substitution to equations with first order $y$-integral. It should be noted that Laine equations are in the considered class of equations. In the work we provide a second order $y$-integral for the second Laine equation and we find a differential substitution relating this equation with one of the Moutard equations. We consider a class of nonlinear hyperbolic equations possessing first order $y$-integrals and third order $x$-integrals. We obtain three conditions under which the equations in this class possess first order and third order integrals. We find the form of such equations and obtain the formulas for $x$- and $y$-integrals. In the paper we also provide differential substitutions relating Laine equations.
Keywords: $x$- and $y$-integrals, differential substitutions.
Mots-clés : Laplace invariants
@article{UFA_2023_15_2_a2,
     author = {Yu. G. Voronova and A. V. Zhiber},
     title = {On a class of hyperbolic equations with third-order integrals},
     journal = {Ufa mathematical journal},
     pages = {20--30},
     year = {2023},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a2/}
}
TY  - JOUR
AU  - Yu. G. Voronova
AU  - A. V. Zhiber
TI  - On a class of hyperbolic equations with third-order integrals
JO  - Ufa mathematical journal
PY  - 2023
SP  - 20
EP  - 30
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a2/
LA  - en
ID  - UFA_2023_15_2_a2
ER  - 
%0 Journal Article
%A Yu. G. Voronova
%A A. V. Zhiber
%T On a class of hyperbolic equations with third-order integrals
%J Ufa mathematical journal
%D 2023
%P 20-30
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a2/
%G en
%F UFA_2023_15_2_a2
Yu. G. Voronova; A. V. Zhiber. On a class of hyperbolic equations with third-order integrals. Ufa mathematical journal, Tome 15 (2023) no. 2, pp. 20-30. http://geodesic.mathdoc.fr/item/UFA_2023_15_2_a2/

[1] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl

[2] O.V. Kaptsov, Methods for integration partial differential equations, Fizmatlit, M., 2009 (in Russian)

[3] O.V. Kaptsov, “On the Goursat classification problem”, Program. Comput. Softw., 38:2 (2012), 102–104 | DOI | MR | Zbl

[4] M.E. Laine, “Sur l'application de la méthode de Darboux aux équations $s=f(x,y,z,p,q)$”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 182 (1926), 1127–1128

[5] A.V. Zhiber, A.M. Yur'eva, “Special class of of Liouville-type hyperbolic equations”, J. Math. Sci., 236:6 (2019), 594–602 | DOI | MR | Zbl