Partial orders on $\ast$-regular rings
Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 34-42

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider some new partial orders on $\ast$-regular rings. Let $\mathcal{A}$ be a $\ast$-regular ring, $P(\mathcal{A})$ be the lattice of all projectors in $\mathcal{A}$ and $\mu$ be a sharp normal normalized measure on $P(\mathcal{A}).$ Suppose that $(\mathcal{A}, \rho)$ is a complete metric $\ast$-ring with respect to the rank metric $\rho$ on $\mathcal{A}$ defined as $\rho(x, y) = \mu(l(x-y))=\mu (r(x-y))$, $x, y \in \mathcal{A}$, where $l(a)$, $r(a)$ is respectively the left and right support of an element $a$. On $\mathcal{A}$ we define the following three partial orders: $a \prec_s b \Longleftrightarrow b = a + c$, $a \perp c;$ $a \prec_l b \Longleftrightarrow l(a) b = a;$ $ a \prec_r b \Longleftrightarrow br (a) = a,$ $a\perp c$ means algebraic orthogonality, that is, $ac = ca = a^\ast c = ac^\ast = 0.$ We prove that the order topologies associated with these partial orders are stronger than the topology generated by the metric $\rho.$ We consider the restrictions of these partial orders on the subsets of projectors, unitary operators and partial isometries of $\ast$-regular algebra $\mathcal{A}.$ In particular, we show that these three orders coincide with the usual order $\le$ on the lattice of the projectors of $\ast$-regular algebra. We also show that the ring isomorphisms of $\ast$-regular rings preserve partial orders $\prec_l$ and $\prec_r$.
Keywords: partial order, $\ast$-regular ring, von Neumann algebra, order topology.
@article{UFA_2023_15_1_a2,
     author = {K. K. Kudaybergenov and B. O. Nurjanov},
     title = {Partial orders on $\ast$-regular rings},
     journal = {Ufa mathematical journal},
     pages = {34--42},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/}
}
TY  - JOUR
AU  - K. K. Kudaybergenov
AU  - B. O. Nurjanov
TI  - Partial orders on $\ast$-regular rings
JO  - Ufa mathematical journal
PY  - 2023
SP  - 34
EP  - 42
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/
LA  - en
ID  - UFA_2023_15_1_a2
ER  - 
%0 Journal Article
%A K. K. Kudaybergenov
%A B. O. Nurjanov
%T Partial orders on $\ast$-regular rings
%J Ufa mathematical journal
%D 2023
%P 34-42
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/
%G en
%F UFA_2023_15_1_a2
K. K. Kudaybergenov; B. O. Nurjanov. Partial orders on $\ast$-regular rings. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 34-42. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/