@article{UFA_2023_15_1_a2,
author = {K. K. Kudaybergenov and B. O. Nurjanov},
title = {Partial orders on $\ast$-regular rings},
journal = {Ufa mathematical journal},
pages = {34--42},
year = {2023},
volume = {15},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/}
}
K. K. Kudaybergenov; B. O. Nurjanov. Partial orders on $\ast$-regular rings. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 34-42. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/
[1] G. Birkhoff, J. von Neumann, “The logic of quantum mechanics”, Ann. of Math., 37:4 (1936), 823–843 | DOI | MR | Zbl
[2] J. von Neumann, “Continuous rings and their arithmetics”, Proc. Nat Acad. Sci. U.S.A., 23 (1937), 341–349 | DOI | Zbl
[3] J. von Neumann, Continuous geometry, Princeton University Press, Princeton, 1960 | MR | Zbl
[4] A. Dvurecenskij, S. Pulmannova, New trends in quantum structures, Springer, Dordrecht, 2000 | MR
[5] P. Ptǎk, S. Pulmannovǎ, Orthomodular structures as quantum logics, Kluwer Academic Publishers Group, Dordrecht, 1991 | MR | Zbl
[6] M. Bohata, “Star order and topologies on von Neumann algebras”, Mediterr. J. Math., 15:4 (2018), 14 pp. | DOI | MR | Zbl
[7] X.P. Zhang, W.J. Shi, G.X. Ji, “Star partial order in a von Neumann algebra”, Acta Math. Sinica, 60:1 (Chin. Ser.), 19–30 | MR | Zbl
[8] E. Chetcuti, J. Hamhalter, H. Weber, “The order topology for a von Neumann algebra”, Studia Math., 230:2 (2015), 95–120 | MR | Zbl
[9] S.K. Berberian, Baer $\ast$-rings, Springer-Verlag, New York-Berlin, 1972 | MR
[10] K.R. Goodearl, Von Neumann regular rings, Pitman, London, 1979 | MR | Zbl
[11] R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras, v. II, Academic Press, Orlando, 1986 | MR | Zbl
[12] R. Kadison, Z. Liu, “A note on derivations of Murray–von Neumann algebras”, Proc. Natl. Acad. Sci. U.S.A., 111:6 (2014), 2087–2093 | DOI | MR | Zbl
[13] M.A. Muratov, V.I. Chilin, “$\ast$-algebras of unbounded operators affiliated with a von Neumann algebra”, J. Math. Sci., 140:3 (2007), 445–451 | DOI | MR
[14] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl
[15] K. Saitô, “On the algebra of measurable operators for a general $AW^*$-algebra II”, Tohoku Math. J., 23:3 (1971), 525–534 | MR
[16] I.E. Segal, “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl
[17] A. Thom, “$L_2$-cohomology for von Neumann algebras”, Geom. Funct. Anal., 18:1 (2008), 251–270 | DOI | MR | Zbl
[18] L. Ciach, “Linear-topological spaces of operators affiliated with von Neumann algebra”, Bull. Polish Acad. Sc., 31:3 (1983), 161–166 | MR | Zbl
[19] Sh.A. Ayupov, K.K. Kudaybergenov, “Ring isomorphisms of Murray-von Neumann algebras”, J. Funct. Anal., 280:5 (2021), 108891 | DOI | MR | Zbl
[20] Sh.A. Ayupov, K.K. Kudaybergenov, “Ring isomorphisms of $\ast$-subalgebras of Murray-von Neumann factors”, Lobachevskii J. Math., 42:12 (2021), 2730–2739 | DOI | MR | Zbl
[21] M.P. Drazin., “Natural structures on semigroups with involution”, Bull. Amer. Math. Soc., 84:1 (1978), 139–141 | DOI | MR | Zbl
[22] R.E. Hartwig, M.P. Drazin, “Lattice properties of the $\ast$-order for complex matrices”, J. Math. Anal. Appl., 86:2 (1982), 359–378 | DOI | MR | Zbl
[23] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Gordon and Breach, New York, 1967 | MR