Partial orders on $\ast$-regular rings
Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 34-42
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we consider some new partial orders on $\ast$-regular rings. Let $\mathcal{A}$ be a $\ast$-regular ring, $P(\mathcal{A})$ be the lattice of all projectors in $\mathcal{A}$ and $\mu$ be a sharp normal normalized measure on $P(\mathcal{A}).$ Suppose that $(\mathcal{A}, \rho)$ is a complete metric $\ast$-ring with respect to the rank metric $\rho$ on $\mathcal{A}$ defined as $\rho(x, y) = \mu(l(x-y))=\mu (r(x-y))$, $x, y \in \mathcal{A}$, where $l(a)$, $r(a)$ is respectively the left and right support of an element $a$. On $\mathcal{A}$ we define the following three partial orders: $a \prec_s b \Longleftrightarrow b = a + c$, $a \perp c;$ $a \prec_l b \Longleftrightarrow l(a) b = a;$ $ a \prec_r b \Longleftrightarrow br (a) = a,$ $a\perp c$ means algebraic orthogonality, that is, $ac = ca = a^\ast c = ac^\ast = 0.$ We prove that the order topologies associated with these partial orders are stronger than the topology generated by the metric $\rho.$ We consider the restrictions of these partial orders on the subsets of projectors, unitary operators and partial isometries of $\ast$-regular algebra $\mathcal{A}.$ In particular, we show that these three orders coincide with the usual order $\le$ on the lattice of the projectors of $\ast$-regular algebra. We also show that the ring isomorphisms of $\ast$-regular rings preserve partial orders $\prec_l$ and $\prec_r$.
Keywords: partial order, $\ast$-regular ring, von Neumann algebra, order topology.
@article{UFA_2023_15_1_a2,
     author = {K. K. Kudaybergenov and B. O. Nurjanov},
     title = {Partial orders on $\ast$-regular rings},
     journal = {Ufa mathematical journal},
     pages = {34--42},
     year = {2023},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/}
}
TY  - JOUR
AU  - K. K. Kudaybergenov
AU  - B. O. Nurjanov
TI  - Partial orders on $\ast$-regular rings
JO  - Ufa mathematical journal
PY  - 2023
SP  - 34
EP  - 42
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/
LA  - en
ID  - UFA_2023_15_1_a2
ER  - 
%0 Journal Article
%A K. K. Kudaybergenov
%A B. O. Nurjanov
%T Partial orders on $\ast$-regular rings
%J Ufa mathematical journal
%D 2023
%P 34-42
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/
%G en
%F UFA_2023_15_1_a2
K. K. Kudaybergenov; B. O. Nurjanov. Partial orders on $\ast$-regular rings. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 34-42. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/

[1] G. Birkhoff, J. von Neumann, “The logic of quantum mechanics”, Ann. of Math., 37:4 (1936), 823–843 | DOI | MR | Zbl

[2] J. von Neumann, “Continuous rings and their arithmetics”, Proc. Nat Acad. Sci. U.S.A., 23 (1937), 341–349 | DOI | Zbl

[3] J. von Neumann, Continuous geometry, Princeton University Press, Princeton, 1960 | MR | Zbl

[4] A. Dvurecenskij, S. Pulmannova, New trends in quantum structures, Springer, Dordrecht, 2000 | MR

[5] P. Ptǎk, S. Pulmannovǎ, Orthomodular structures as quantum logics, Kluwer Academic Publishers Group, Dordrecht, 1991 | MR | Zbl

[6] M. Bohata, “Star order and topologies on von Neumann algebras”, Mediterr. J. Math., 15:4 (2018), 14 pp. | DOI | MR | Zbl

[7] X.P. Zhang, W.J. Shi, G.X. Ji, “Star partial order in a von Neumann algebra”, Acta Math. Sinica, 60:1 (Chin. Ser.), 19–30 | MR | Zbl

[8] E. Chetcuti, J. Hamhalter, H. Weber, “The order topology for a von Neumann algebra”, Studia Math., 230:2 (2015), 95–120 | MR | Zbl

[9] S.K. Berberian, Baer $\ast$-rings, Springer-Verlag, New York-Berlin, 1972 | MR

[10] K.R. Goodearl, Von Neumann regular rings, Pitman, London, 1979 | MR | Zbl

[11] R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras, v. II, Academic Press, Orlando, 1986 | MR | Zbl

[12] R. Kadison, Z. Liu, “A note on derivations of Murray–von Neumann algebras”, Proc. Natl. Acad. Sci. U.S.A., 111:6 (2014), 2087–2093 | DOI | MR | Zbl

[13] M.A. Muratov, V.I. Chilin, “$\ast$-algebras of unbounded operators affiliated with a von Neumann algebra”, J. Math. Sci., 140:3 (2007), 445–451 | DOI | MR

[14] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[15] K. Saitô, “On the algebra of measurable operators for a general $AW^*$-algebra II”, Tohoku Math. J., 23:3 (1971), 525–534 | MR

[16] I.E. Segal, “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[17] A. Thom, “$L_2$-cohomology for von Neumann algebras”, Geom. Funct. Anal., 18:1 (2008), 251–270 | DOI | MR | Zbl

[18] L. Ciach, “Linear-topological spaces of operators affiliated with von Neumann algebra”, Bull. Polish Acad. Sc., 31:3 (1983), 161–166 | MR | Zbl

[19] Sh.A. Ayupov, K.K. Kudaybergenov, “Ring isomorphisms of Murray-von Neumann algebras”, J. Funct. Anal., 280:5 (2021), 108891 | DOI | MR | Zbl

[20] Sh.A. Ayupov, K.K. Kudaybergenov, “Ring isomorphisms of $\ast$-subalgebras of Murray-von Neumann factors”, Lobachevskii J. Math., 42:12 (2021), 2730–2739 | DOI | MR | Zbl

[21] M.P. Drazin., “Natural structures on semigroups with involution”, Bull. Amer. Math. Soc., 84:1 (1978), 139–141 | DOI | MR | Zbl

[22] R.E. Hartwig, M.P. Drazin, “Lattice properties of the $\ast$-order for complex matrices”, J. Math. Anal. Appl., 86:2 (1982), 359–378 | DOI | MR | Zbl

[23] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Gordon and Breach, New York, 1967 | MR