Partial orders on $\ast$-regular rings
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 34-42
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this work we consider some new partial orders on $\ast$-regular rings. Let  $\mathcal{A}$ be a $\ast$-regular ring, $P(\mathcal{A})$ be the lattice of all projectors in  $\mathcal{A}$ and $\mu$ be a sharp normal normalized measure on  $P(\mathcal{A}).$ Suppose that $(\mathcal{A}, \rho)$ is a complete metric $\ast$-ring with respect to the rank metric $\rho$ on  $\mathcal{A}$ defined as $\rho(x, y) = \mu(l(x-y))=\mu (r(x-y))$,  $x, y \in \mathcal{A}$,
where $l(a)$, $r(a)$ is respectively the left and right support of an element $a$. On $\mathcal{A}$ we define the following three partial orders:
$a \prec_s b \Longleftrightarrow b = a + c$,  $a \perp c;$ $a \prec_l b \Longleftrightarrow l(a) b = a;$
$ a \prec_r b \Longleftrightarrow br (a) = a,$ $a\perp c$ means algebraic orthogonality, that is,
$ac = ca = a^\ast c = ac^\ast = 0.$ We prove that the order topologies associated with these partial orders are stronger than the topology generated by the metric $\rho.$ We consider the restrictions of these partial orders on the subsets of projectors, unitary operators and partial isometries of $\ast$-regular algebra $\mathcal{A}.$ In particular, we show that these three orders coincide with the usual order $\le$ on the lattice of the projectors of $\ast$-regular algebra. We also show that the ring isomorphisms of $\ast$-regular rings preserve partial orders
$\prec_l$ and $\prec_r$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
partial order, $\ast$-regular ring, von Neumann algebra, order topology.
                    
                    
                    
                  
                
                
                @article{UFA_2023_15_1_a2,
     author = {K. K. Kudaybergenov and B. O. Nurjanov},
     title = {Partial orders on $\ast$-regular rings},
     journal = {Ufa mathematical journal},
     pages = {34--42},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/}
}
                      
                      
                    K. K. Kudaybergenov; B. O. Nurjanov. Partial orders on $\ast$-regular rings. Ufa mathematical journal, Tome 15 (2023) no. 1, pp. 34-42. http://geodesic.mathdoc.fr/item/UFA_2023_15_1_a2/
