Mots-clés : Taylor coefficients, Faà di Bruno formula
@article{UFA_2022_14_3_a7,
author = {A. B. Kostin and V. B. Sherstyukov},
title = {On {Taylor} coefficients of analytic function related with {Euler} number},
journal = {Ufa mathematical journal},
pages = {70--85},
year = {2022},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/}
}
A. B. Kostin; V. B. Sherstyukov. On Taylor coefficients of analytic function related with Euler number. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 70-85. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/
[1] G. Pólya, G. Szegő, Problems and theorems in analysis, v. I, Series, integral calculus, theory of functions, Springer, Berlin, 1998 | MR | MR
[2] B.M. Makarov, M.G. Goluzina, A.A. Lodkin, A.N. Podkorytov, Selected problems in real analysis, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl
[3] V.M. Fedoseev, “Methods of calculating the number $e$ as a topic of educational research”, Matem. Obraz., 2021, no. 2(98), 50–53 (in Russian)
[4] J. Riordan, An introduction to combinatorial analysis, Princeton Univ. Press, Princeton, New Jersey, 1980 | MR | Zbl
[5] A.P. Polyakov, “On expressing a derivative of arbitrary order of function of function”, Matem. Sb., 5:2 (1909), 180–202 (in Russian)
[6] W. Kudrjawtzew, “General formula for a derivative of $n$th order of a power of some function”, Matem. Prosvesch. Ser. 1, 1 (1934), 24–27 (in Russian)
[7] S.V. Dvoryaninov, M. Silvanovich, “On Faa-di-Bruno formula for composite derivatives”, Matem. Obraz., 2009, no. 1(49), 22–26 (in Russian)
[8] W.P. Johnson, “The curious history of Faà di Bruno's formula”, Amer. Math. Monthly, 109 (2002), 217–234 | MR | Zbl
[9] M.A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl
[10] M.A.Evgrafov, Analytic functions, Nauka Dover Publications, New York, 1978 | MR | MR
[11] A.B. Kostin, V.B. Sherstyukov, D.G. Tsvetkovich, “On approximation of the number $\pi^2$”, Systemy Kompyuter. Matem. Pril. Smolensk, 22 (2021), 261–264 (in Russian)
[12] A.B. Kostin, V.B. Sherstyukov, D.G. Tsvetkovich, “Enveloping of Riemann's zeta function values and curious approximation”, Lobachevskii Math. J., 43:3 (2022), 1376–1381 | DOI | MR