On  Taylor coefficients of analytic function related with Euler number
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 70-85
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a classical construction of second remarkable limit. We pose a question on asymptotically  sharp description of the character of such approximation of the number  $e$. In view of this we need the information on behavior of the coefficients in the power expansion for the function $f(x)=e^{-1}\,(1+x)^{1/x}$ converging in the interval $-1$. We obtain a recurrent rule regulating the forming of the mentioned coefficients.  We show that the coefficients form a sign-alternating sequence of rational numbers
$(-1)^n\,a_n$, where $n\in\mathbb{N}\cup\{0\}$ and $a_0=1$, the absolute values of which strictly decay. On the base of the Faá di Bruno formula for the derivatives of a composed function we propose a combinatorial way of calculating the numbers  $a_n$ as $n\in\mathbb{N}$. The original function $f(x)$ is the restriction of the function $f(z)$ on the real ray  $x>-1$ having the same Taylor coefficients and being analytic in the complex plane $\mathbb{C}$ with the cut along $(-\infty,\,-1]$. By the methods of the complex analysis we obtain an integral representation for
$a_n$ for each value of the parameter $n\in\mathbb{N}$. We prove that $a_n\rightarrow 1/e$ as $n\rightarrow\infty$ and find the convergence rate of the difference  $a_n-1/e$ to zero. We also discuss the issue on choosing the contour in the integral Cauchy formula for calculating the Taylor coefficients   $(-1)^n\,a_n$ of the function $f(z)$. We find the exact values of arising in calculations special improper integrals. The results of the made study allows us to give a series of general two-sided estimates for the deviation  $e-(1+x)^{1/x}$ consistent with the asymptotics of  $f(x)$ as $x\to 0$. We discuss the possibilities of applying the obtained statements.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Euler  number, analytic function, integral representation, asymptotic behavior.
Mots-clés : Taylor coefficients, Faà di Bruno formula
                    
                  
                
                
                Mots-clés : Taylor coefficients, Faà di Bruno formula
@article{UFA_2022_14_3_a7,
     author = {A. B. Kostin and V. B. Sherstyukov},
     title = {On  {Taylor} coefficients of analytic function related with {Euler} number},
     journal = {Ufa mathematical journal},
     pages = {70--85},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/}
}
                      
                      
                    A. B. Kostin; V. B. Sherstyukov. On Taylor coefficients of analytic function related with Euler number. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 70-85. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/
