On Taylor coefficients of analytic function related with Euler number
Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 70-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a classical construction of second remarkable limit. We pose a question on asymptotically sharp description of the character of such approximation of the number $e$. In view of this we need the information on behavior of the coefficients in the power expansion for the function $f(x)=e^{-1}\,(1+x)^{1/x}$ converging in the interval $-1$. We obtain a recurrent rule regulating the forming of the mentioned coefficients. We show that the coefficients form a sign-alternating sequence of rational numbers $(-1)^n\,a_n$, where $n\in\mathbb{N}\cup\{0\}$ and $a_0=1$, the absolute values of which strictly decay. On the base of the Faá di Bruno formula for the derivatives of a composed function we propose a combinatorial way of calculating the numbers $a_n$ as $n\in\mathbb{N}$. The original function $f(x)$ is the restriction of the function $f(z)$ on the real ray $x>-1$ having the same Taylor coefficients and being analytic in the complex plane $\mathbb{C}$ with the cut along $(-\infty,\,-1]$. By the methods of the complex analysis we obtain an integral representation for $a_n$ for each value of the parameter $n\in\mathbb{N}$. We prove that $a_n\rightarrow 1/e$ as $n\rightarrow\infty$ and find the convergence rate of the difference $a_n-1/e$ to zero. We also discuss the issue on choosing the contour in the integral Cauchy formula for calculating the Taylor coefficients $(-1)^n\,a_n$ of the function $f(z)$. We find the exact values of arising in calculations special improper integrals. The results of the made study allows us to give a series of general two-sided estimates for the deviation $e-(1+x)^{1/x}$ consistent with the asymptotics of $f(x)$ as $x\to 0$. We discuss the possibilities of applying the obtained statements.
Keywords: Euler number, analytic function, integral representation, asymptotic behavior.
Mots-clés : Taylor coefficients, Faà di Bruno formula
@article{UFA_2022_14_3_a7,
     author = {A. B. Kostin and V. B. Sherstyukov},
     title = {On {Taylor} coefficients of analytic function related with {Euler} number},
     journal = {Ufa mathematical journal},
     pages = {70--85},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/}
}
TY  - JOUR
AU  - A. B. Kostin
AU  - V. B. Sherstyukov
TI  - On Taylor coefficients of analytic function related with Euler number
JO  - Ufa mathematical journal
PY  - 2022
SP  - 70
EP  - 85
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/
LA  - en
ID  - UFA_2022_14_3_a7
ER  - 
%0 Journal Article
%A A. B. Kostin
%A V. B. Sherstyukov
%T On Taylor coefficients of analytic function related with Euler number
%J Ufa mathematical journal
%D 2022
%P 70-85
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/
%G en
%F UFA_2022_14_3_a7
A. B. Kostin; V. B. Sherstyukov. On Taylor coefficients of analytic function related with Euler number. Ufa mathematical journal, Tome 14 (2022) no. 3, pp. 70-85. http://geodesic.mathdoc.fr/item/UFA_2022_14_3_a7/

[1] G. Pólya, G. Szegő, Problems and theorems in analysis, v. I, Series, integral calculus, theory of functions, Springer, Berlin, 1998 | MR | MR

[2] B.M. Makarov, M.G. Goluzina, A.A. Lodkin, A.N. Podkorytov, Selected problems in real analysis, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[3] V.M. Fedoseev, “Methods of calculating the number $e$ as a topic of educational research”, Matem. Obraz., 2021, no. 2(98), 50–53 (in Russian)

[4] J. Riordan, An introduction to combinatorial analysis, Princeton Univ. Press, Princeton, New Jersey, 1980 | MR | Zbl

[5] A.P. Polyakov, “On expressing a derivative of arbitrary order of function of function”, Matem. Sb., 5:2 (1909), 180–202 (in Russian)

[6] W. Kudrjawtzew, “General formula for a derivative of $n$th order of a power of some function”, Matem. Prosvesch. Ser. 1, 1 (1934), 24–27 (in Russian)

[7] S.V. Dvoryaninov, M. Silvanovich, “On Faa-di-Bruno formula for composite derivatives”, Matem. Obraz., 2009, no. 1(49), 22–26 (in Russian)

[8] W.P. Johnson, “The curious history of Faà di Bruno's formula”, Amer. Math. Monthly, 109 (2002), 217–234 | MR | Zbl

[9] M.A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl

[10] M.A.Evgrafov, Analytic functions, Nauka Dover Publications, New York, 1978 | MR | MR

[11] A.B. Kostin, V.B. Sherstyukov, D.G. Tsvetkovich, “On approximation of the number $\pi^2$”, Systemy Kompyuter. Matem. Pril. Smolensk, 22 (2021), 261–264 (in Russian)

[12] A.B. Kostin, V.B. Sherstyukov, D.G. Tsvetkovich, “Enveloping of Riemann's zeta function values and curious approximation”, Lobachevskii Math. J., 43:3 (2022), 1376–1381 | DOI | MR