Some  Chebyshev type inequalities for  generalized   Riemann--Liouville  operator
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 88-96
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we are interested in the famous inequality introduced by  Chebyshev. This inequality has several generalizations and applications in different fields of mathematics and others.
In particular it is important for us the applications of fractional calculus for the different integral Chebyshev type  inequalities.
We establish and prove some theorems and corollaries relating to fractional integral, by applying more general fractional integral operator than Riemann-Liouville one:
$$ K^{\alpha,\beta}_{u,v}=\frac{v(x)}{\Gamma(\alpha)}\int\limits^{x}_{0}(x-t)^{\alpha -1}\left[\ln\left(\frac{x}{t}\right)\right]^{\beta-1}f(t) u(t)dt, \quad x>0 $$
where $\alpha>0$, $\beta\geq 1$, $u$ and $v$ locally integrable non-negative weight functions, $\Gamma  $ is the Euler Gamma-function. First, fractional integral Chebyshev type  inequalities are obtained for operator $K^{\alpha,\beta}_{u,v}$  with two synchronous  or  two asynchronous  functions and by induction  for several functions. Second, we consider an extended Chebyshev functional
\begin{align*}
T(f,g,p,q):=\int\limits_{a}^{b} q(x) dx \int\limits_{a}^{b}p(x) f(x) g(x) dx +
 \int\limits_{a}^{b} p(x)dx\int\limits_{a}^{b}q(x)f(x)g(x)dx
 \\
 -
\left(\int\limits_{a}^{b} q(x) f(x) dx\right)\left(\int\limits_{a}^{b} p(x) g(x)dx\right)
\\
-
\left(\int\limits_{a}^{b} p(x) f(x) dx\right) \left(\int\limits_{a}^{b} q(x) g(x) dx\right),
\end{align*}
where $p$, $q$ are positive integrable weight functions on  $[a,b]$. In this case fractional integral weighted inequalities are established for two fractional integral operators  $K^{\alpha_{1},\beta_{1}}_{u_{1},v_{1}}$ and  $K^{\alpha_{2},\beta_{2}}_{u_{2},v_{2}}$, with two  synchronous or asynchronous functions, where  $\alpha_ {1} \neq  \alpha_{2}$, $\beta _{1} \neq \beta_{2}$ and $u_{1} \neq u_{2}$, $v_{1} \neq  v_{2}$. In addition, a fractional integral  Hölder type inequality for several functions is established using the operator $K^{\alpha,\beta}_{u,v}$. At the end,  another fractional integral Chebyshev type inequality is given for increasing function  $f$  and  differentiable function $g$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Chebyshev functional, Integral Inequalities,  RL-fractional operator.
                    
                    
                    
                  
                
                
                @article{UFA_2020_12_2_a8,
     author = {B. Halim and A. Senouci and M. Sofrani},
     title = {Some  {Chebyshev} type inequalities for  generalized   {Riemann--Liouville}  operator},
     journal = {Ufa mathematical journal},
     pages = {88--96},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/}
}
                      
                      
                    TY - JOUR AU - B. Halim AU - A. Senouci AU - M. Sofrani TI - Some Chebyshev type inequalities for generalized Riemann--Liouville operator JO - Ufa mathematical journal PY - 2020 SP - 88 EP - 96 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/ LA - en ID - UFA_2020_12_2_a8 ER -
B. Halim; A. Senouci; M. Sofrani. Some Chebyshev type inequalities for generalized Riemann--Liouville operator. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 88-96. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/
