Some Chebyshev type inequalities for generalized Riemann–Liouville operator
Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 88-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we are interested in the famous inequality introduced by Chebyshev. This inequality has several generalizations and applications in different fields of mathematics and others. In particular it is important for us the applications of fractional calculus for the different integral Chebyshev type inequalities. We establish and prove some theorems and corollaries relating to fractional integral, by applying more general fractional integral operator than Riemann-Liouville one: $$ K^{\alpha,\beta}_{u,v}=\frac{v(x)}{\Gamma(\alpha)}\int\limits^{x}_{0}(x-t)^{\alpha -1}\left[\ln\left(\frac{x}{t}\right)\right]^{\beta-1}f(t) u(t)dt, \quad x>0 $$ where $\alpha>0$, $\beta\geq 1$, $u$ and $v$ locally integrable non-negative weight functions, $\Gamma $ is the Euler Gamma-function. First, fractional integral Chebyshev type inequalities are obtained for operator $K^{\alpha,\beta}_{u,v}$ with two synchronous or two asynchronous functions and by induction for several functions. Second, we consider an extended Chebyshev functional \begin{align*} T(f,g,p,q):=\int\limits_{a}^{b} q(x) dx \int\limits_{a}^{b}p(x) f(x) g(x) dx + \int\limits_{a}^{b} p(x)dx\int\limits_{a}^{b}q(x)f(x)g(x)dx \\ - \left(\int\limits_{a}^{b} q(x) f(x) dx\right)\left(\int\limits_{a}^{b} p(x) g(x)dx\right) \\ - \left(\int\limits_{a}^{b} p(x) f(x) dx\right) \left(\int\limits_{a}^{b} q(x) g(x) dx\right), \end{align*} where $p$, $q$ are positive integrable weight functions on $[a,b]$. In this case fractional integral weighted inequalities are established for two fractional integral operators $K^{\alpha_{1},\beta_{1}}_{u_{1},v_{1}}$ and $K^{\alpha_{2},\beta_{2}}_{u_{2},v_{2}}$, with two synchronous or asynchronous functions, where $\alpha_ {1} \neq \alpha_{2}$, $\beta _{1} \neq \beta_{2}$ and $u_{1} \neq u_{2}$, $v_{1} \neq v_{2}$. In addition, a fractional integral Hölder type inequality for several functions is established using the operator $K^{\alpha,\beta}_{u,v}$. At the end, another fractional integral Chebyshev type inequality is given for increasing function $f$ and differentiable function $g$.
Keywords: Chebyshev functional, Integral Inequalities, RL-fractional operator.
@article{UFA_2020_12_2_a8,
     author = {B. Halim and A. Senouci and M. Sofrani},
     title = {Some {Chebyshev} type inequalities for generalized {Riemann{\textendash}Liouville} operator},
     journal = {Ufa mathematical journal},
     pages = {88--96},
     year = {2020},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/}
}
TY  - JOUR
AU  - B. Halim
AU  - A. Senouci
AU  - M. Sofrani
TI  - Some Chebyshev type inequalities for generalized Riemann–Liouville operator
JO  - Ufa mathematical journal
PY  - 2020
SP  - 88
EP  - 96
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/
LA  - en
ID  - UFA_2020_12_2_a8
ER  - 
%0 Journal Article
%A B. Halim
%A A. Senouci
%A M. Sofrani
%T Some Chebyshev type inequalities for generalized Riemann–Liouville operator
%J Ufa mathematical journal
%D 2020
%P 88-96
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/
%G en
%F UFA_2020_12_2_a8
B. Halim; A. Senouci; M. Sofrani. Some Chebyshev type inequalities for generalized Riemann–Liouville operator. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 88-96. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/

[1] G. A. Anastassiou, Fractional differentiation inequalities, Springer, New York, 2009 | MR | Zbl

[2] S. Belarbi, Z. Dahmani, “On some new fractional integral inequality”, J. Ineq. Pure Appl. Math., 10:3 (2009), 1–5 | MR

[3] P. L. Chebyshev, “Sur les expressions approximatives des intégrales définies par les autres prises entre les mêmes limites”, Proc. Math. Soc. Charkov, 2 (1882), 93–98

[4] Z. Dahmani, “Some results associate with fractional integrals involving the extended Chebyshev”, Acta Univ. Apulensis Math. Inform., 27 (2011), 217–224 | MR | Zbl

[5] Z. Dahmani, “About some integral inequalities using Riemann-Liouville integrals”, Gen. Math., 20:4 (2012), 63–69

[6] S. M. Farsani, “On the boundedness and compactness of a certain integral operator”, Banach J. Math. Anal., 7:2 (2013), 86–102 | DOI | MR | Zbl

[7] D. S. Mitrinovic, Analytic inequalities, Springer, Berlin, 1970 | MR | Zbl