Some Chebyshev type inequalities for generalized Riemann--Liouville operator
Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 88-96

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we are interested in the famous inequality introduced by Chebyshev. This inequality has several generalizations and applications in different fields of mathematics and others. In particular it is important for us the applications of fractional calculus for the different integral Chebyshev type inequalities. We establish and prove some theorems and corollaries relating to fractional integral, by applying more general fractional integral operator than Riemann-Liouville one: $$ K^{\alpha,\beta}_{u,v}=\frac{v(x)}{\Gamma(\alpha)}\int\limits^{x}_{0}(x-t)^{\alpha -1}\left[\ln\left(\frac{x}{t}\right)\right]^{\beta-1}f(t) u(t)dt, \quad x>0 $$ where $\alpha>0$, $\beta\geq 1$, $u$ and $v$ locally integrable non-negative weight functions, $\Gamma $ is the Euler Gamma-function. First, fractional integral Chebyshev type inequalities are obtained for operator $K^{\alpha,\beta}_{u,v}$ with two synchronous or two asynchronous functions and by induction for several functions. Second, we consider an extended Chebyshev functional \begin{align*} T(f,g,p,q):=\int\limits_{a}^{b} q(x) dx \int\limits_{a}^{b}p(x) f(x) g(x) dx + \int\limits_{a}^{b} p(x)dx\int\limits_{a}^{b}q(x)f(x)g(x)dx \\ - \left(\int\limits_{a}^{b} q(x) f(x) dx\right)\left(\int\limits_{a}^{b} p(x) g(x)dx\right) \\ - \left(\int\limits_{a}^{b} p(x) f(x) dx\right) \left(\int\limits_{a}^{b} q(x) g(x) dx\right), \end{align*} where $p$, $q$ are positive integrable weight functions on $[a,b]$. In this case fractional integral weighted inequalities are established for two fractional integral operators $K^{\alpha_{1},\beta_{1}}_{u_{1},v_{1}}$ and $K^{\alpha_{2},\beta_{2}}_{u_{2},v_{2}}$, with two synchronous or asynchronous functions, where $\alpha_ {1} \neq \alpha_{2}$, $\beta _{1} \neq \beta_{2}$ and $u_{1} \neq u_{2}$, $v_{1} \neq v_{2}$. In addition, a fractional integral Hölder type inequality for several functions is established using the operator $K^{\alpha,\beta}_{u,v}$. At the end, another fractional integral Chebyshev type inequality is given for increasing function $f$ and differentiable function $g$.
Keywords: Chebyshev functional, Integral Inequalities, RL-fractional operator.
@article{UFA_2020_12_2_a8,
     author = {B. Halim and A. Senouci and M. Sofrani},
     title = {Some  {Chebyshev} type inequalities for  generalized   {Riemann--Liouville}  operator},
     journal = {Ufa mathematical journal},
     pages = {88--96},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/}
}
TY  - JOUR
AU  - B. Halim
AU  - A. Senouci
AU  - M. Sofrani
TI  - Some  Chebyshev type inequalities for  generalized   Riemann--Liouville  operator
JO  - Ufa mathematical journal
PY  - 2020
SP  - 88
EP  - 96
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/
LA  - en
ID  - UFA_2020_12_2_a8
ER  - 
%0 Journal Article
%A B. Halim
%A A. Senouci
%A M. Sofrani
%T Some  Chebyshev type inequalities for  generalized   Riemann--Liouville  operator
%J Ufa mathematical journal
%D 2020
%P 88-96
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/
%G en
%F UFA_2020_12_2_a8
B. Halim; A. Senouci; M. Sofrani. Some  Chebyshev type inequalities for  generalized   Riemann--Liouville  operator. Ufa mathematical journal, Tome 12 (2020) no. 2, pp. 88-96. http://geodesic.mathdoc.fr/item/UFA_2020_12_2_a8/