Uniqueness theorems for meromorphic functions on annuli
Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 114-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we discuss the uniqueness problems of meromorphic functions on annuli. We prove a general theorem on the uniqueness of meromorphic functions on annuli. An analogue of a famous Nevanlinna's five-value theorem is proposed. The main result in this paper is an analog of a result on the plane $\mathbb{C}$ obtained by H.S. Gopalkrishna and Subhas S. Bhoosnurmath for an annuli. That is, let $f_{1}(z)$ and $f_{2}(z)$ be two transcendental meromorphic functions on the annulus $\mathbb{A}=\left\{z:\frac{1}{R_{0}}|z|$, where $1$ Let $a_{j}$, $j=1,2,\ldots,q)$, be $q$ distinct complex numbers in $\overline{\mathbb{C}}$, and $k_{j}$, $j=1,2,\ldots,q$ be positive integers or $\infty$ satisfying \begin{equation*} k_{1}\geq k_{2}\geq \ldots \geq k_{q}. \end{equation*} If \begin{equation*} \overline{E}_{k_{j})}(a_{j},f_{1})=\overline{E}_{k_{j})}(a_{j},f_{2}), j=1,2,\ldots,q, \end{equation*} and \begin{equation*} \sum_{j=2}^{q}\frac{k_{j}}{k_{j}+1}-\frac{k_{1}}{k_{1}+1}>2, \end{equation*} then $f_{1}(z)\equiv f_{2}(z).$
Keywords: Nevanlinna theory, meromorphic functions
Mots-clés : annuli.
@article{UFA_2020_12_1_a8,
     author = {A. Rathod},
     title = {Uniqueness theorems for meromorphic functions on annuli},
     journal = {Ufa mathematical journal},
     pages = {114--120},
     year = {2020},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a8/}
}
TY  - JOUR
AU  - A. Rathod
TI  - Uniqueness theorems for meromorphic functions on annuli
JO  - Ufa mathematical journal
PY  - 2020
SP  - 114
EP  - 120
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a8/
LA  - en
ID  - UFA_2020_12_1_a8
ER  - 
%0 Journal Article
%A A. Rathod
%T Uniqueness theorems for meromorphic functions on annuli
%J Ufa mathematical journal
%D 2020
%P 114-120
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a8/
%G en
%F UFA_2020_12_1_a8
A. Rathod. Uniqueness theorems for meromorphic functions on annuli. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 114-120. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a8/

[1] Yang Tan, Yue Wang, “On the multiple values and uniqueness of algebroid functions on annuli”, Compl. Variab. Ell. Equat., 60:9 (2015), 1254–1269 | DOI | MR | Zbl

[2] Yang Tan, “Several uniqueness theorems of algebroid functions on annuli”, Acta Mathematica Scientia, 36:1 (2016), 295–316 | DOI | MR | Zbl

[3] Valiron G, “Sur quelques proprietes des fonctions algebroldes”, C.R. Math. Acad. des Sci. Paris, 189 (1929), 824–826 | Zbl

[4] H.S. Gopalkrishna, S.S. Bhoosnurmath, “Uniqueness theorems for meromorphic functions”, Math. Scand., 39 (1976), 125–130 | DOI | MR

[5] M.L. Fang, “A note on a result of Singh and Kulkarni”, Int. J. Math. Sci., 23:4 (2000), 285–288 | DOI | MR | Zbl

[6] A.Ya. Khrystiyanyn, A.A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. I”, Mathematychni Studii, 23:1 (2005), 19–30 | MR | Zbl

[7] A.Ya. Khrystiyanyn, A.A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. II”, Mathematychni Studii, 24:2 (2005), 57–68 | MR | Zbl

[8] T.B. Cao, H.X. Yi, H.Y. Xu, “On the multiple values and uniqueness of meromorphic functions on annuli”, Comput. Math. Appl., 58:7 (2009), 1457–1465 | DOI | MR | Zbl

[9] Yu-Zan He, Xiu-Zhi Xiao, Algebroid functions and ordinarry difference equations, Science Press, Beijing, 1988

[10] A. Fernandez, “On the value distribution of meromorphic function in the punctured plane”, Mathematychni Studii, 34:2 (2010), 136–144 | MR | Zbl

[11] Meili Liang, “On the value distribution of algebroid functions”, SOP Trans. Appl. Math., 1:1 (2014), 23–30 | DOI

[12] W.K. Hayman, Meromorphic functions, Oxford University Press, Oxford, 1964 | MR | Zbl

[13] R.S. Dyavanal, A. Rathod, “Uniqueness theorems for meromorphic functions on annuli”, Indian J. Math. Math. Sci., 12:1 (2016), 1–10 | MR

[14] R.S. Dyavanal, A. Rathod, “Multiple values and uniqueness of meromorphic functions on annuli”, Int. J. Pure Appl. Math., 107:4 (2016), 983–995 | DOI

[15] R.S. Dyavanal, A. Rathod, “On the value distribution of meromorphic functions on annuli”, Indian J. Math. Math. Sci., 12:2 (2016), 203–217 | MR

[16] R.S. Dyavanal, A. Rathod, “Some generalisation of Nevanlinna's five-value theorem for algebroid functions on annuli”, Asian J. Math. Comp. Research, 20:2 (2017), 85–95 | MR

[17] R.S. Dyavanal, A. Rathod, “Nevanlinna's five-value theorem for derivatives of meromorphic functions sharing values on annuli”, Asian J. Math. Comp. Research, 20:1 (2017), 13–21 | MR

[18] R.S. Dyavanal, A. Rathod, “Unicity theorem for algebroid functions related to multiple values and derivatives on annuli”, Int. J. Fuzzy Math. Arch., 13:1 (2017), 25–39 | MR

[19] R.S. Dyavanal, A. Rathod, “General Milloux inequality for algebroid functions on annuli”, Int. J. Math. Appl., 5:3 (2017), 319–326 | MR

[20] A. Rathod, “The multiple values of algebroid functions and uniqueness”, Asian Journal of Mathematics and Computer Research, 14:2 (2016), 150–157 | MR

[21] Ashok Rathod, “The uniqueness of meromorphic functions concerning five or more values and small functions on annuli”, Asian J. Current Research, 1:3 (2016), 101–107

[22] A. Rathod, “Uniqueness of algebroid functions dealing with multiple values on annuli”, J. Basic Appl. Research Int., 19:3 (2016), 157–167 | MR

[23] A. Rathod, “On the deficiencies of algebroid functions and their differential polynomials”, Journal of Basic and Applied Research International, 1:1 (2016), 1–11 | MR

[24] A. Rathod, “The multiple values of algebroid functions and uniqueness on annuli”, Konuralp J. Math., 5:2 (2017), 216–227 | MR | Zbl

[25] A. Rathod, “Several uniqueness theorems for algebroid functions”, J. Anal., 25:2 (2017), 203–213 | DOI | MR | Zbl

[26] A. Rathod, “Nevanlinna's five-value theorem for algebroid functions”, Ufa Math. J., 10:2 (2018), 127–132 | DOI | MR

[27] A. Rathod, “Nevanlinna's five-value theorem for derivatives of algebroid functions on annuli”, Tamkang J. Math., 49:2 (2018), 129–142 | DOI | MR | Zbl

[28] S.S. Bhoosnurmath, R.S. Dyavanal, Mahesh Barki, A. Rathod, “Value distribution for n'th difference operator of meromorphic functions with maximal deficiency sum”, J. Anal., 27 (2019), 797–811 | DOI | MR | Zbl

[29] A. Rathod, “Characteristic function and deficiency of algebroid functions on annuli”, Ufa Math. J., 11:1 (2019), 121–132 | DOI | MR

[30] A. Rathod, “Value distribution of a algebroid function and its linear combination of derivatives on annuli”, Electr. J. Math. Anal. Appl., 8:1 (2020), 129–142 | MR

[31] A. A. Kondratyuk, I. Laine, “Meromorphic functions in multiply connected domains”, Fourier Series Methods in Complex Analysis, Report Series, 10, Depart. Math. Univ. Joensuu, 2006, 1–111 | MR