Existence of solutions for nonlinear singular $q$-Sturm--Liouville problems
Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 91-102
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study a nonlinear $q$-Sturm–Liouville problem on the semi-infinite interval, in which the limit-circle case holds at infinity for the $q$-Sturm–Liouville expression. This problem is considered in the Hilbert space $L_{q}^{2}\left( 0,\infty\right)$. We study this problem by using a special way of imposing boundary conditions at infinity. In the work, we recall some necessary fundamental concepts of quantum calculus such as $q$-derivative, the Jackson $q$-integration, the $q$-Wronskian, the maximal operator, etc. We construct the Green function associated with the problem and reduce it to a fixed point problem. Applying the classical Banach fixed point theorem, we prove the existence and uniqueness of the solutions for this problem. We obtain an existence theorem without the uniqueness of the solution. In order to get this result, we use the well-known Schauder fixed point theorem.
Keywords:
Nonlinear $q$-Sturm–Liouville problem, singular point, Weyl limit-circle case, completely continuous operator, fixed point theorems.
@article{UFA_2020_12_1_a6,
author = {B. P. Allahverdiev and H. Tuna},
title = {Existence of solutions for nonlinear singular $q${-Sturm--Liouville} problems},
journal = {Ufa mathematical journal},
pages = {91--102},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a6/}
}
TY - JOUR AU - B. P. Allahverdiev AU - H. Tuna TI - Existence of solutions for nonlinear singular $q$-Sturm--Liouville problems JO - Ufa mathematical journal PY - 2020 SP - 91 EP - 102 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a6/ LA - en ID - UFA_2020_12_1_a6 ER -
B. P. Allahverdiev; H. Tuna. Existence of solutions for nonlinear singular $q$-Sturm--Liouville problems. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a6/