@article{UFA_2020_12_1_a6,
author = {B. P. Allahverdiev and H. Tuna},
title = {Existence of solutions for nonlinear singular $q${-Sturm{\textendash}Liouville} problems},
journal = {Ufa mathematical journal},
pages = {91--102},
year = {2020},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a6/}
}
B. P. Allahverdiev; H. Tuna. Existence of solutions for nonlinear singular $q$-Sturm–Liouville problems. Ufa mathematical journal, Tome 12 (2020) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/UFA_2020_12_1_a6/
[1] V. Kac, P. Cheung, Quantum calculus, Springer-Verlag, New York, NY, USA, 2002 | MR | Zbl
[2] T. Ernst, The History of $q$-calculus and a new method, U. U. D. M. Report, Department of Math., Uppsala Univ., Uppsala, Sweden, 2000
[3] M.H. Annaby, Z.S. Mansour, $q$-Fractional Ccalculus and equations, Lecture Notes Math., 2056, Springer-Verlag, Heidelberg, Germany, 2012 | DOI | MR
[4] B. Ahmad, J.J. Nieto, “Basic theory of nonlinear third-order $q$-difference equations and inclusions”, Math. Model. Anal., 18:1 (2013), 122–135 | DOI | MR | Zbl
[5] B. Ahmad, S. K. Ntouyas, “Boundary value problems for $q$-difference inclusions”, Abstr. Appl. Anal., 2011 (2011), 292860 | MR | Zbl
[6] B. Ahmad, S. K. Ntouyas, “Boundary value problems for $q$-difference equations and inclusions with nonlocal and integral boundary conditions”, Math. Model. Anal., 19:5 (2014), 647–663 | DOI | MR
[7] B. Ahmad, S. K. Ntouyas, I. K. Purnaras, “Existence results for nonlinear $q$-difference equations with nonlocal boundary conditions”, Comm. Appl. Nonl. Anal., 19:3 (2012), 59–72 | MR | Zbl
[8] T. Saengngammongkhol, B. Kaewwisetkul, T. Sitthiwirattham, “Existence results for nonlinear second-order $q$-difference equations with $q$-integral boundary conditions”, Diff. Equat. Appl., 7:3 (2015), 303–311 | MR | Zbl
[9] T. Sitthiwirattham, J. Tariboon, S.K. Ntouyas, “Three-point boundary value problems of nonlinear second-order $q$-difference equations involving different numbers of $q$”, J. Appl. Math., 2013 (2013), 763786 | DOI | MR | Zbl
[10] W. Sudsutad, S. K. Ntouyas, J. Tariboon, “Quantum integral inequalities for convex functions”, J. Math. Inequal., 9:3 (2015), 781–793 | DOI | MR | Zbl
[11] P. Thiramanus, J. Tariboon, “Nonlinear second-order $q$-difference equations with three-point boundary conditions”, Comput. Appl. Math., 33:2 (2014), 385–397 | DOI | MR | Zbl
[12] C. Yu, J. Wang, “Existence of solutions for nonlinear second-order $q$-difference equations with first-order $q$-derivatives”, Adv. Difference Equat., 2013 (2013), 124 | DOI | MR
[13] M. El-Shahed, H.A. Hassan, “Positive solutions of $q$-difference equation”, Proc. Amer. Math. Soc., 138:5 (2010), 1733–1738 | DOI | MR | Zbl
[14] F.H. Jackson, “On $q$-difference equations”, Amer. J. Math., 32:4 (1910), 305–314 | DOI | MR | Zbl
[15] Z. Hefeng, L. Wenjun, “Existence results for a second-order $q$-difference equation with only integral conditions”, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 79:4 (2017), 221–234 | MR
[16] Z. Mansour, M. Al-Towailb, “$q$-Lidstone polynomials and existence results for $q$-boundary value problems”, Bound. Value Probl., 2017 (2017), 178 | DOI | MR | Zbl
[17] M.J. Mardanov, Y.A. Sharifov, “Existence and uniqueness results for $q$-difference equations with two-point boundary conditions”, AIP Conf. Proc., 1676 (2015), 020065 | DOI
[18] R. P. Agarwal, G. Wang, B. Ahmad, L. Zhang, A. Hobiny, S. Monaquel, “On existence of solutions for nonlinear $q$-difference equations with nonlocal $q$-integral boundary conditions”, Math. Model. Anal., 20:5 (2015), 604–618 | DOI | MR
[19] G.Sh. Guseinov, I. Yaslan, “Boundary value problems for second order nonlinear differential equations on infinite intervals”, J. Math. Anal. Appl., 290:2 (2004), 620–638 | DOI | MR | Zbl
[20] B.P. Allahverdiev, H. Tuna, “Nonlinear singular Sturm-Liouville problems with impulsive conditions”, Facta Univ., Ser. Math. Inf., 34:3 (2019), 439–457 | MR
[21] P.N. Swamy, “Deformed Heisenberg algebra:origin of $q$-calculus”, Physica A: Statist. Mechan. Appl., 328:1-2 (2003), 145–153 | DOI | MR | Zbl
[22] W. Hahn, “Beitraäge zur Theorie der Heineschen Reihen”, Math. Nachr., 2 (1949), 340–379 (in German) | DOI | MR | Zbl
[23] M.H. Annaby, Z.S. Mansour, I.A. Soliman, “$q$-Titchmarsh-Weyl theory: series expansion”, Nagoya Math. J., 205 (2012), 67–118 | DOI | MR | Zbl
[24] A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis, Dover Publ., New York, 1970 | MR