Some relations for universal Bernoulli polynomials
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 131-139

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a generalization of the Bernoulli polynomials, which we call universal Bernoulli polynomials. They are related to the Lazard universal formal group. The corresponding numbers by construction coincide with the universal Bernoulli numbers. They turn out to have an important role in complex cobordism theory. They also obey generalizations of the celebrated Kummer and Clausen–von Staudt congruences. We derive a formula on the integral of products of higher-order universal Bernoulli polynomials. As an application of this formula, the Laplace transform of periodic universal Bernoulli polynomials is presented. Moreover, we obtain the Fourier series expansion of higher-order universal Bernoulli function.
Keywords: Bernoulli polynomials and numbers, integrals, Fourier series.
Mots-clés : formal group
@article{UFA_2019_11_4_a10,
     author = {M. C. Da\u{g}l{\i}},
     title = {Some relations for universal {Bernoulli} polynomials},
     journal = {Ufa mathematical journal},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/}
}
TY  - JOUR
AU  - M. C. Dağlı
TI  - Some relations for universal Bernoulli polynomials
JO  - Ufa mathematical journal
PY  - 2019
SP  - 131
EP  - 139
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/
LA  - en
ID  - UFA_2019_11_4_a10
ER  - 
%0 Journal Article
%A M. C. Dağlı
%T Some relations for universal Bernoulli polynomials
%J Ufa mathematical journal
%D 2019
%P 131-139
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/
%G en
%F UFA_2019_11_4_a10
M. C. Dağlı. Some relations for universal Bernoulli polynomials. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 131-139. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/