Some relations for universal Bernoulli polynomials
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 131-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a generalization of the Bernoulli polynomials, which we call universal Bernoulli polynomials. They are related to the Lazard universal formal group. The corresponding numbers by construction coincide with the universal Bernoulli numbers. They turn out to have an important role in complex cobordism theory. They also obey generalizations of the celebrated Kummer and Clausen–von Staudt congruences. We derive a formula on the integral of products of higher-order universal Bernoulli polynomials. As an application of this formula, the Laplace transform of periodic universal Bernoulli polynomials is presented. Moreover, we obtain the Fourier series expansion of higher-order universal Bernoulli function.
Keywords: Bernoulli polynomials and numbers, integrals, Fourier series.
Mots-clés : formal group
@article{UFA_2019_11_4_a10,
     author = {M. C. Da\u{g}l{\i}},
     title = {Some relations for universal {Bernoulli} polynomials},
     journal = {Ufa mathematical journal},
     pages = {131--139},
     year = {2019},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/}
}
TY  - JOUR
AU  - M. C. Dağlı
TI  - Some relations for universal Bernoulli polynomials
JO  - Ufa mathematical journal
PY  - 2019
SP  - 131
EP  - 139
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/
LA  - en
ID  - UFA_2019_11_4_a10
ER  - 
%0 Journal Article
%A M. C. Dağlı
%T Some relations for universal Bernoulli polynomials
%J Ufa mathematical journal
%D 2019
%P 131-139
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/
%G en
%F UFA_2019_11_4_a10
M. C. Dağlı. Some relations for universal Bernoulli polynomials. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 131-139. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a10/

[1] A. Adelberg, “Universal higher order Bernoulli numbers and Kummer and related congruences”, J. Number Theory, 84:1 (2000), 119–135 | DOI | MR | Zbl

[2] A. Adelberg, “Universal Bernoulli polynomials and $p$-adic congruences, applications of Fibonacci numbers”, Proceedings of the Tenth International research conference on Fibonacci numbers and their applications, Springer, Dordrecht, 2004, 1–8 | MR

[3] T. Agoh, K. Dilcher, “Integrals of products of Bernoulli polynomials”, J. Math. Anal. Appl., 381:1 (2011), 10–16 | DOI | MR | Zbl

[4] F. Clarke, “The universal von Staudt theorems”, Trans. Amer. Math. Soc., 315:2 (1989), 591–603 | DOI | MR | Zbl

[5] M. C. Dağl\i, M. Can, “On reciprocity formula of character Dedekind sums and the integral of products of Bernoulli polynomials”, J. Number Theory, 156 (2015), 105–124 | DOI | MR | Zbl

[6] M. C. Dağl\i, M. Can, “On the integral of products of higher-order Bernoulli and Euler polynomials”, Funct. Approx. Comment. Math., 57:1 (2017), 7–20 | DOI | MR | Zbl

[7] S. Hu, D. Kim, M. S. Kim, “On the integral of the product of four and more Bernoulli polynomials”, Ramanujan J., 33:2 (2014), 281–293 | DOI | MR | Zbl

[8] M. S. Kim, “On the special values of Tornheim's multiple series”, J. Appl. Math. Inform., 33:3–4 (2015), 305–315 | DOI | MR | Zbl

[9] J. Liu, H. Pan, Y. Zhang, “On the integral of the product of the Appell polynomials”, Integ. Transf. Spec. Funct., 25:9 (2014), 680–685 | DOI | MR | Zbl

[10] G. C. Rota, Finite operator calculus, Academic Press, New York, 1975 | MR | Zbl

[11] P. Tempesta, “$L$-series and Hurwitz zeta functions associated with the universal formal group”, Annali Scuola Normale Superiore, Classe di Scienze, 9:5 (2010), 133–144 | MR | Zbl

[12] P. Tempesta, “On Appell sequences of polynomials of Bernoulli and Euler type”, J. Math. Anal. Appl., 341:2 (2007), 1295–1310 | DOI | MR

[13] P. Tempesta, “Formal groups, Bernoulli-type polynomials and L-series”, C. R. Math. Acad. Sci. Paris, Ser. I, 345:6 (2007), 303–306 | DOI | MR | Zbl

[14] P. Tempesta, “The Lazard formal group, universal congruences and special values of zeta functions”, Trans. Amer. Math. Soc., 367:10 (2015), 7015–7028 | DOI | MR | Zbl