A one-radius theorem on a sphere with pricked point
Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We considers local properties of mean periodicity on the two-dimensional sphere $\mathbb{S}^2$. According to the classical properties of periodic functions, each function continuous on the unit circle $\mathbb{S}^1$ and possessing zero integrals over any interval of a fixed length $2r$ on $\mathbb{S}^1$ is identically zero if and only if the number $r/\pi$ is irrational. In addition, there is no non-zero continuous function on $\mathbb{R}$ possessing zero integrals over all segments of fixed length and their boundaries. The aim of this paper is to study similar phenomena on a sphere in $\mathbb{R}^3$ with a pricked point. We study smooth functions on $\mathbb{S}^2\setminus(0,0,-1)$ with zero integrals over all admissible spherical caps and circles of a fixed radius. For such functions, we establish a one-radius theorem, which implies the injectivity of the corresponding integral transform. We also improve the well-known Ungar theorem on spherical means, which gives necessary and sufficient conditions for the spherical cap belong to the class of Pompeiu sets on $\mathbb{S}^2$. The proof of the main results is based on the description of solutions $f\in C^{\infty}(\mathbb{S}^2\setminus(0,0,-1))$ of the convolution equation $(f\ast \sigma_r)(\xi)=0$, $\xi\in B_{\pi-r}$, where $B_{\pi-r}$ is the open geodesic ball of radius $\pi-r$ centered at the point $(0,0,1)$ on $\mathbb{S}^2$ and $\sigma_r$ is the delta-function supported on $\partial B_r$. The key tool used for describing $f$ is the Fourier series in spherical harmonics on $\mathbb{S}^1$. We show that the Fourier coefficients $f_k(\theta)$ of the function $f$ are representable by series in Legendre functions related with the zeroes of the function $P_\nu(\cos r)$. Our main results are consequence of the above representation of the function $f$ and the corresponding properties of the Legendre functions. The results obtained in the work can be used in solving problems associated with ball and spherical means.
Keywords: spherical means, Legendre functions
Mots-clés : Pompeiu transform, convolution.
@article{UFA_2019_11_4_a0,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {A one-radius theorem on a sphere with pricked point},
     journal = {Ufa mathematical journal},
     pages = {3--12},
     year = {2019},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a0/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - A one-radius theorem on a sphere with pricked point
JO  - Ufa mathematical journal
PY  - 2019
SP  - 3
EP  - 12
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a0/
LA  - en
ID  - UFA_2019_11_4_a0
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T A one-radius theorem on a sphere with pricked point
%J Ufa mathematical journal
%D 2019
%P 3-12
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a0/
%G en
%F UFA_2019_11_4_a0
N. P. Volchkova; Vit. V. Volchkov. A one-radius theorem on a sphere with pricked point. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 3-12. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a0/

[1] C.A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl

[2] V.V. Volchkov, “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279–1294 | DOI | DOI | MR | Zbl

[3] V.V. Volchkov, Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl

[4] V.V. Volchkov, Vit.V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer-Verlag, London, 2009 | MR | Zbl

[5] V.V. Volchkov, Vit.V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser, Basel, 2013 | MR | Zbl

[6] V.V. Volchkov, “On the injectivity of the local Pompeiu transform on the sphere”, Math. Notes, 81:1 (2007), 51–60 | DOI | DOI | MR | Zbl

[7] P. Ungar, “Freak theorem about functions on a sphere”, J. London Math. Soc., 29:2 (1954), 100–103 | DOI | MR | Zbl

[8] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, v. I–III, Robert E. Krieger Publishing Company, Malabar, Florida, 1981 | MR

[9] E. Badertscher, “The Pompeiu problem on locally symmetric spaces”, J. Analyse Math., 57:1 (1991), 250–281 | DOI | MR | Zbl

[10] E. Riekstiņš, Asymptotic expansions of integrals, Zinatne, Riga, 1974 (in Russian)

[11] C.A. Berenstein, L. Zalcman, “Pompeiu's problem on spaces of constant curvature”, J. D'Analyse Math., 30:1 (1976), 113–130 | DOI | MR | Zbl