Mots-clés : Pompeiu transform, convolution.
@article{UFA_2019_11_4_a0,
author = {N. P. Volchkova and Vit. V. Volchkov},
title = {A one-radius theorem on a sphere with pricked point},
journal = {Ufa mathematical journal},
pages = {3--12},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a0/}
}
N. P. Volchkova; Vit. V. Volchkov. A one-radius theorem on a sphere with pricked point. Ufa mathematical journal, Tome 11 (2019) no. 4, pp. 3-12. http://geodesic.mathdoc.fr/item/UFA_2019_11_4_a0/
[1] C.A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl
[2] V.V. Volchkov, “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279–1294 | DOI | DOI | MR | Zbl
[3] V.V. Volchkov, Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl
[4] V.V. Volchkov, Vit.V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer-Verlag, London, 2009 | MR | Zbl
[5] V.V. Volchkov, Vit.V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser, Basel, 2013 | MR | Zbl
[6] V.V. Volchkov, “On the injectivity of the local Pompeiu transform on the sphere”, Math. Notes, 81:1 (2007), 51–60 | DOI | DOI | MR | Zbl
[7] P. Ungar, “Freak theorem about functions on a sphere”, J. London Math. Soc., 29:2 (1954), 100–103 | DOI | MR | Zbl
[8] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, v. I–III, Robert E. Krieger Publishing Company, Malabar, Florida, 1981 | MR
[9] E. Badertscher, “The Pompeiu problem on locally symmetric spaces”, J. Analyse Math., 57:1 (1991), 250–281 | DOI | MR | Zbl
[10] E. Riekstiņš, Asymptotic expansions of integrals, Zinatne, Riga, 1974 (in Russian)
[11] C.A. Berenstein, L. Zalcman, “Pompeiu's problem on spaces of constant curvature”, J. D'Analyse Math., 30:1 (1976), 113–130 | DOI | MR | Zbl