Azarin limiting sets of   functions and asymptotic representation of integrals
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 97-113
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper we consider integrals of form
$$\int\limits_a^b f(t)\exp[i\varphi(rt)\ln(rt)]\,dt\,,$$
where $\varphi(r)$ is a smooth increasing function on the semi-axis $[0,\infty)$ such that
$\lim\limits_{r\to+\infty}\varphi(r)=\infty\,.$ We find a precise information on their asymptotic behavior and we prove an analogue of Riemann-Lebesgue lemma for trigonometric integrals.
By applying this lemma, we succeed to obtain the asymptotic formulae for integrals with an absolutely continuous function. The proposed method of obtaining asymptotic formulae differs from classical method like Laplace method, applications of residua, saddle-point method, etc. To make the presentation more solid,
we mostly restrict ourselves by the kernels $\exp[i\ln^p(rt)]$.
Appropriate smoothness conditions for the function $f(t)$ allow us to obtain many-terms formulae. The properties of the integrals and
the methods of obtaining asymptotic estimates differ in the cases $p\in(0,1)$, $p=1$, $p>1$. As $p\in(0,1)$, the asymptotic expansions are obtained by another method, namely, by expanding the kernel into a series. We consider the cases, when as an absolutely continuous function  $f(t)$, we take a product of a power function $t^\rho$ and the Poisson kernel or the conjugate Poisson kernel for the half-plane and as the integration set, the imaginary semi-axis serves. The real and imaginary parts of these integrals are harmonic functions in the complex plane cut along the positive semi-axis. We find the Azarin limiting sets for such functions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
trigonometric integral, asymptotic formula, harmonic function, Azarin limiting set.
Mots-clés : Riemann–Lebesgue lemma, Poisson kernel
                    
                  
                
                
                Mots-clés : Riemann–Lebesgue lemma, Poisson kernel
@article{UFA_2019_11_2_a6,
     author = {K. G. Malyutin and T. I. Malyutina and T. V. Shevtsova},
     title = {Azarin limiting sets of   functions and asymptotic representation of integrals},
     journal = {Ufa mathematical journal},
     pages = {97--113},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a6/}
}
                      
                      
                    TY - JOUR AU - K. G. Malyutin AU - T. I. Malyutina AU - T. V. Shevtsova TI - Azarin limiting sets of functions and asymptotic representation of integrals JO - Ufa mathematical journal PY - 2019 SP - 97 EP - 113 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a6/ LA - en ID - UFA_2019_11_2_a6 ER -
%0 Journal Article %A K. G. Malyutin %A T. I. Malyutina %A T. V. Shevtsova %T Azarin limiting sets of functions and asymptotic representation of integrals %J Ufa mathematical journal %D 2019 %P 97-113 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a6/ %G en %F UFA_2019_11_2_a6
K. G. Malyutin; T. I. Malyutina; T. V. Shevtsova. Azarin limiting sets of functions and asymptotic representation of integrals. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 97-113. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a6/
