@article{UFA_2019_11_2_a5,
author = {A. R. Danilin and A. A. Shaburov},
title = {Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables},
journal = {Ufa mathematical journal},
pages = {82--96},
year = {2019},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/}
}
TY - JOUR AU - A. R. Danilin AU - A. A. Shaburov TI - Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables JO - Ufa mathematical journal PY - 2019 SP - 82 EP - 96 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/ LA - en ID - UFA_2019_11_2_a5 ER -
%0 Journal Article %A A. R. Danilin %A A. A. Shaburov %T Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables %J Ufa mathematical journal %D 2019 %P 82-96 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/ %G en %F UFA_2019_11_2_a5
A. R. Danilin; A. A. Shaburov. Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 82-96. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/
[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The mathematical theory of optimal processes, Interscience Publ. John Wiley and Sons. Inc., New York, 1962 | MR | MR | Zbl
[2] N.N. Krasovskii, Theory of motion control. Linear systems, Nauka, M., 1968 (in Russian)
[3] E.B. Lee, L. Markus, Foundations of optimal control theory, John Wiley and Sons. Inc., New York, 1967 | MR | Zbl
[4] A.B. Vasil'eva, M.G. Dmitriev, “Singular perturbations in problems of optimal control”, J. Soviet Math., 34:3 (1986), 1579–1629 | DOI | MR | Zbl | Zbl
[5] P.V. Kokotovic, A.H. Haddad, “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl
[6] A.L. Dontchev, Perturbations, approximations and sensitivity analisis of optimal control systems, Springer-Verlag, Berlin, 1983 | MR
[7] A.I. Kalinin, K.V. Semenov, “Asymptotic optimization method for linear singularly perturbed systems with multidimensional control”, Comp. Math. Math. Phys., 44:3 (2004), 407–417 | MR | Zbl
[8] A.R. Danilin, Yu.V. Parysheva, “Asymptotics of the optimal cost functional in a linear optimal control problem”, Dokl. Math., 80:1 (2009), 478–481 | DOI | MR | Zbl
[9] A.R. Danilin, O.O. Kovrizhnykh, “Time-optimal control of a small mass point without environmental resistance”, Dokl. Math., 88:1 (2013), 465–467 | DOI | DOI | MR | Zbl
[10] A.A. Shaburov, “Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only”, Trudy IMM UrO RAN, 24, no. 2, 2018, 280–289 (in Russian) | MR
[11] R. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970 | MR | Zbl