Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables
Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 82-96
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an optimal control problem with a convex integral quality functional for a linear system with fast and slow variables in the class of piecewise continuous controls with smooth constraints on the control $$ \left\{ \begin{aligned} \dot{x}_{\varepsilon} = A_{11}x_{\varepsilon} + A_{12}y_{\varepsilon}+B_{1}u,\qquad t\in[0,T],\qquad \|u\|\leqslant 1,\\ \varepsilon\dot{y}_{\varepsilon} = A_{22}y_{\varepsilon} + B_{2}u,\quad x_{\varepsilon}(0)=x^{0},\qquad y_{\varepsilon}(0)=y^{0},\qquad \nabla\varphi_2(0)=0, \\ (u)\mathop{:=}\nolimits \varphi_1\left(x_\varepsilon(T)\right) + \varphi_2\left(y_\varepsilon(T)\right) + \int\limits_{0}^{T}\|u(t)\|^2\,dt\rightarrow \min, \end{aligned} \right. $$ where $x\in\mathbb{R}^{n}$, $y\in\mathbb{R}^{m}$, $ u\in\mathbb{R}^{r}$; $A_{ij}$ and $B_{i}$, $i,j=1,2$, are constant matrices of corresponding dimension, and the functions $\varphi_{1}(\cdot), \varphi_{2}(\cdot)$ are continuously differentiable in $\mathbb{R}^{n}, \mathbb{R}^{m},$ strictly convex, and cofinite in the sense of the convex analysis. In the general case, for such problem, the Pontryagin maximum principle is a necessary and sufficient optimality condition and there exist unique vectors $l_\varepsilon$ and $\rho_\varepsilon$ determining an optimal control by the formula $$ u_{\varepsilon}(T-t):= \frac{C_{1,\varepsilon}^{*}(t)l_\varepsilon + C_{2,\varepsilon}^{*}(t)\rho_\varepsilon} {S\left(\|C_{1,\varepsilon}^{*}(t)l_\varepsilon + C_{2,\varepsilon}^{*}(t)\rho_\varepsilon\|\right)}, $$ where \begin{align*} C_{1,\varepsilon}^{*}(t):= B^*_1 e^{A^*_{11}t} + \varepsilon^{-1}B^*_2\mathcal{W^*}_\varepsilon(t),\quad C_{2,\varepsilon}^{*}(t):= \varepsilon^{-1} B^*_2 e^{A^*_{22} t/\varepsilon}, \\ \mathcal{W}_\varepsilon(t):= e^{A_{11}t}\int\limits_{0}^{t} e^{-A_{11}\tau}A_{12}e^{A_{22} \tau/\varepsilon}\,d\tau, \quad S(\xi)\mathop{:=}\nolimits \left\{ \begin{aligned} 2,\qquad 0\leqslant \xi\leqslant2, \\ \xi, \qquad \xi>2. \end{aligned} \right. \end{align*} The main difference of our problem from the previous papers is that the terminal part of quality functional depends on the slow and fast variables and the controlled system is a more general form. We prove that in the case of a finite number of control change points, a power asymptotic expansion can be constructed for the initial vector of dual state $\lambda_\varepsilon=\left(l_\varepsilon^*\: \rho_\varepsilon^*\right)^*$, which determines the type of the optimal control.
Keywords: optimal control, singularly perturbed problems, asymptotic expansion, small parameter.
@article{UFA_2019_11_2_a5,
     author = {A. R. Danilin and A. A. Shaburov},
     title = {Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables},
     journal = {Ufa mathematical journal},
     pages = {82--96},
     year = {2019},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - A. A. Shaburov
TI  - Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables
JO  - Ufa mathematical journal
PY  - 2019
SP  - 82
EP  - 96
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/
LA  - en
ID  - UFA_2019_11_2_a5
ER  - 
%0 Journal Article
%A A. R. Danilin
%A A. A. Shaburov
%T Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables
%J Ufa mathematical journal
%D 2019
%P 82-96
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/
%G en
%F UFA_2019_11_2_a5
A. R. Danilin; A. A. Shaburov. Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables. Ufa mathematical journal, Tome 11 (2019) no. 2, pp. 82-96. http://geodesic.mathdoc.fr/item/UFA_2019_11_2_a5/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The mathematical theory of optimal processes, Interscience Publ. John Wiley and Sons. Inc., New York, 1962 | MR | MR | Zbl

[2] N.N. Krasovskii, Theory of motion control. Linear systems, Nauka, M., 1968 (in Russian)

[3] E.B. Lee, L. Markus, Foundations of optimal control theory, John Wiley and Sons. Inc., New York, 1967 | MR | Zbl

[4] A.B. Vasil'eva, M.G. Dmitriev, “Singular perturbations in problems of optimal control”, J. Soviet Math., 34:3 (1986), 1579–1629 | DOI | MR | Zbl | Zbl

[5] P.V. Kokotovic, A.H. Haddad, “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[6] A.L. Dontchev, Perturbations, approximations and sensitivity analisis of optimal control systems, Springer-Verlag, Berlin, 1983 | MR

[7] A.I. Kalinin, K.V. Semenov, “Asymptotic optimization method for linear singularly perturbed systems with multidimensional control”, Comp. Math. Math. Phys., 44:3 (2004), 407–417 | MR | Zbl

[8] A.R. Danilin, Yu.V. Parysheva, “Asymptotics of the optimal cost functional in a linear optimal control problem”, Dokl. Math., 80:1 (2009), 478–481 | DOI | MR | Zbl

[9] A.R. Danilin, O.O. Kovrizhnykh, “Time-optimal control of a small mass point without environmental resistance”, Dokl. Math., 88:1 (2013), 465–467 | DOI | DOI | MR | Zbl

[10] A.A. Shaburov, “Asymptotic expansion of a solution to a singularly perturbed optimal control problem with a convex integral performance index whose terminal part depends on slow variables only”, Trudy IMM UrO RAN, 24, no. 2, 2018, 280–289 (in Russian) | MR

[11] R. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970 | MR | Zbl