On zeros of polynomial
Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 114-120
Voir la notice de l'article provenant de la source Math-Net.Ru
For a given polynomial
\begin{equation*}
P\left( z\right) =z^{n}+a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\cdots +a_{1}z+a_{0}
\end{equation*}
with real or complex coefficients,
the Cauchy bound
\begin{equation*}
\left\vert z\right\vert 1+A,\qquad A=\underset{0\leqslant j\leqslant n-1}{
\max }\left\vert a_{j}\right\vert
\end{equation*}
does not reflect the fact that for $A$ tending to zero, all the zeros of $P\left( z\right) $ approach the origin $z=0$. Moreover, Guggenheimer (1964)
generalized the Cauchy bound by using a lacunary type polynomial
\begin{equation*}
p\left( z\right) =z^{n}+a_{n-p}z^{n-p}+a_{n-p-1}z^{n-p-1}+\cdots
+a_{1}z+a_{0}, \qquad 0\text{.}
\end{equation*}
In this paper we obtain new results related with above facts. Our first result is the best possible. For the case as $A$
tends to zero, it reflects the fact that all the zeros of $P(z)$ approach the origin $z=0$; it also sharpens the result obtained by Guggenheimer.
The rest of the related results concern zero-free bounds giving
some important corollaries. In many cases the new bounds are much
better than other well-known bounds.
Keywords:
zeroes, region, Cauchy bound, Lacunary type polynomials.
@article{UFA_2019_11_1_a9,
author = {Subhasis Das},
title = {On zeros of polynomial},
journal = {Ufa mathematical journal},
pages = {114--120},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a9/}
}
Subhasis Das. On zeros of polynomial. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 114-120. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a9/