On zeros of polynomial
Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 114-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a given polynomial \begin{equation*} P\left( z\right) =z^{n}+a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\cdots +a_{1}z+a_{0} \end{equation*} with real or complex coefficients, the Cauchy bound \begin{equation*} \left\vert z\right\vert 1+A,\qquad A=\underset{0\leqslant j\leqslant n-1}{ \max }\left\vert a_{j}\right\vert \end{equation*} does not reflect the fact that for $A$ tending to zero, all the zeros of $P\left( z\right) $ approach the origin $z=0$. Moreover, Guggenheimer (1964) generalized the Cauchy bound by using a lacunary type polynomial \begin{equation*} p\left( z\right) =z^{n}+a_{n-p}z^{n-p}+a_{n-p-1}z^{n-p-1}+\cdots +a_{1}z+a_{0}, \qquad 0

\text{.} \end{equation*} In this paper we obtain new results related with above facts. Our first result is the best possible. For the case as $A$ tends to zero, it reflects the fact that all the zeros of $P(z)$ approach the origin $z=0$; it also sharpens the result obtained by Guggenheimer. The rest of the related results concern zero-free bounds giving some important corollaries. In many cases the new bounds are much better than other well-known bounds.
Keywords: zeroes, region, Cauchy bound, Lacunary type polynomials.
@article{UFA_2019_11_1_a9,
     author = {Subhasis Das},
     title = {On zeros of polynomial},
     journal = {Ufa mathematical journal},
     pages = {114--120},
     year = {2019},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a9/}
}
TY  - JOUR
AU  - Subhasis Das
TI  - On zeros of polynomial
JO  - Ufa mathematical journal
PY  - 2019
SP  - 114
EP  - 120
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a9/
LA  - en
ID  - UFA_2019_11_1_a9
ER  - 
%0 Journal Article
%A Subhasis Das
%T On zeros of polynomial
%J Ufa mathematical journal
%D 2019
%P 114-120
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a9/
%G en
%F UFA_2019_11_1_a9
Subhasis Das. On zeros of polynomial. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 114-120. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a9/

[1] A. Joyal, G. Labelle, Q. I. Rahman, “On the location of zeros of polynomials”, Canad. Math. Bull., 10:1 (1967), 53–63 | DOI | MR | Zbl

[2] A Chattopadhyay, S. Das, V. K. Jain, H. Konwer, “Certain generalizations of Eneström-Kakeya Theorem”, J. Ind. Math. Soc., 72:1–4 (2005), 147–156 | MR | Zbl

[3] B. Datt, N. K. Govil, “On the location of the zeros of polynomial”, J. Approx. Theory, 24:1 (1978), 78–82 | DOI | MR | Zbl

[4] F. G. Boese, W. J. Luther, “A note on a classical bound for the moduli of all zeros of a polynomial”, IEEE Trans. Automat. Contr., 34:9 (1989), 998–1001 | DOI | MR | Zbl

[5] H. Guggenheimer, “On a note by Q. G. Mohammad”, Amer. Math. Monthly, 71:1 (1964), 54–55 | DOI | MR | Zbl

[6] M. Marden, Geometry of polynomials, Amer. Math. Soc. Math. Surveys, 3, Amer. Math. Soc., Providence R. I., 1966 | MR | Zbl

[7] S. Das, S. K. Datta, “On Cauchy's proper bound for zeros of a polynomial”, Int. J. Math. Sci. Eng. Apple, 2:4 (2008), 241–252 | Zbl

[8] V. K. Jain, “On Cauchy's type bounds for zeros of a polynomial”, Ann. Univ. Mariae Curie-Skłodowska Lublin Polonia, XLIX:8 (1995), 109–116 | MR | Zbl

[9] V. K. Jain, “On the location of zeros of a polynomial”, Bull. Math. Soc. Sci. Math. Roum. Nuov. Sér., 54(102):4 (2011), 337–352 | MR | Zbl