Mots-clés : invariants of subalgeba, partial invariant solution, simple solutions.
@article{UFA_2019_11_1_a7,
author = {S. V. Khabirov},
title = {Simple partially invariant solutions},
journal = {Ufa mathematical journal},
pages = {90--99},
year = {2019},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a7/}
}
S. V. Khabirov. Simple partially invariant solutions. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 90-99. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a7/
[1] S.V. Khabirov, Yu.A. Chirkunov, Emelents of symmetry analysis of differential equations of contionuous media mechanics, Novosibirsk State Tech. Univ., Novosibirsk, 2012 (in Russian)
[2] L.V. Ovsyannikov, “The “PODMODELI” program. Gas dynamics”, J. Appl. Math. Mech., 58:4 (1994), 601–627 | DOI | MR | Zbl
[3] E.V. Mamontov, “Invariant submodels of rank two to the equations of gas dynamics”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 232–237 | DOI | MR | Zbl
[4] S.V. Khabirov, Lectures on analytic methods in gas dynamics, Bashkir State Univ., Ufa, 2013 (in Russian)
[5] L.V. Ovsyannikov, ““Simple” solutions to the dynamics equations for a polytropic gas”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 191–197 | DOI | MR | Zbl
[6] S.V. Khabirov, “A hierarchy of submodels of differential equations”, Siber. Math. J., 54:6 (2013), 1111–1120 | DOI | MR | Zbl
[7] L.V. Ovsyannikov, “Regular and nonregular partially invariant solutions”, Dokl. Math., 52:1 (1995), 23–26 | MR | MR | Zbl
[8] A.A. Cherevko, A.P. Chupakhin, Ovsyannikov stationary vortex, Preprint No 1-2005, Lavrentiev Hydrodanymics Inst., Novosibirsk, 2005 (in Russian)