On an interpolation problem in the class of functions of exponential type in a half-plane
Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 19-26

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability conditions for interpolation problem $f(n)=d_{n},\quad n \in {\mathbb{N}} $ in the class of entire functions satisfying the condition $ \left| {f(z)} \right|\le e^{\pi \left| {\mathrm{Im}\,z} \right|+o\left( {\left| z \right|} \right)}, z\to \infty$ are well known. In the presented paper we study the interpolation problem $f(\lambda_ {n}) = d_ {n} $ in the class of exponential type functions in the half-plane. We find sufficient solvability conditions for the considerate problem. In particular, a sufficient part of Carleson's interpolation theorem is generalized and an analogue of a classic interpolation condition is found in the form $$\sum\limits_{j = k}^{\infty} \mathrm{Re}\,\left( - \xi _{j} \frac{\lambda _{k} ^{2} - 1}{\lambda _{k} + \overline {\lambda_j}} \right) \le c_{3}, \qquad \xi _{j} : = \frac{\mathrm{Re}\,\lambda_j} {1 + \left| \lambda_j\right|^{2}}.$$ The necessity of sufficient conditions is also discussed. The results are applied to studying a problem on splitting and searching an analogue of the identity $2\cos z=\exp(-iz)+\exp(iz)$ for each function of exponential type in the half-plane. We prove that each holomorphic in the right-hand half-plane function $f$ obeying the , estimate $\left| {f(z)} \right|\le O(\exp(\sigma| \mathrm{Im}\,z|))$ can be represented in the form $f=f_1+f_2$ and the functions $f_1$ and $f_2$ holomorphic in the right-hand half-plane satisfy conditions $$ \left| {f_1(z)} \right|\le O (\exp(| z|h_{-}(\varphi)))\quad\text{and} \left| {f_2(z)} \right|\le O(\exp(| z|h_{+}(\varphi))), $$ where $\sigma\in [0;+\infty)$, $z = re^{i\varphi}$, $$h_{ +} (\varphi ) = \left\{ \begin{aligned} \sigma {\left| {\sin \varphi} \right|}, \varphi \in \left[0;\frac{\pi}{2}\right], \\ 0, \varphi \in \left[-\frac{\pi}{2};0\right], \end{aligned}\right. \qquad h_{ -} (\varphi ) = \left\{ \begin{aligned} 0, \varphi \in \left[0;\frac{\pi}{2}\right], \\ \sigma {\left| {\sin \varphi} \right|}, \varphi \in \left[ -\frac{\pi}{2};0\right]. \end{aligned}\right. $$ The paper uses methods works by L. Carleson, P. Jones, K. Kazaryan, K. Malyutin and other mathematicians.
Keywords: holomorphic functions of exponential type in the half-plane, splitting of holomorphic functions.
Mots-clés : interpolation
@article{UFA_2019_11_1_a1,
     author = {B. V. Vynnyt'skyi and V. L. Sharan and I. B. Sheparovych},
     title = {On an interpolation problem in the class of functions of exponential type in a half-plane},
     journal = {Ufa mathematical journal},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/}
}
TY  - JOUR
AU  - B. V. Vynnyt'skyi
AU  - V. L. Sharan
AU  - I. B. Sheparovych
TI  - On an interpolation problem in the class of functions of exponential type in a half-plane
JO  - Ufa mathematical journal
PY  - 2019
SP  - 19
EP  - 26
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/
LA  - en
ID  - UFA_2019_11_1_a1
ER  - 
%0 Journal Article
%A B. V. Vynnyt'skyi
%A V. L. Sharan
%A I. B. Sheparovych
%T On an interpolation problem in the class of functions of exponential type in a half-plane
%J Ufa mathematical journal
%D 2019
%P 19-26
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/
%G en
%F UFA_2019_11_1_a1
B. V. Vynnyt'skyi; V. L. Sharan; I. B. Sheparovych. On an interpolation problem in the class of functions of exponential type in a half-plane. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/