On an interpolation problem in the class of functions of exponential type in a half-plane
Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 19-26
Voir la notice de l'article provenant de la source Math-Net.Ru
Solvability conditions for
interpolation problem $f(n)=d_{n},\quad n \in {\mathbb{N}} $ in the
class of entire functions satisfying the condition
$ \left| {f(z)} \right|\le
e^{\pi \left| {\mathrm{Im}\,z} \right|+o\left( {\left| z \right|} \right)},
z\to \infty$ are well known. In the presented paper we study
the interpolation problem $f(\lambda_ {n}) = d_ {n} $ in the class of
exponential type functions in the half-plane. We find sufficient
solvability conditions for the considerate problem.
In particular, a sufficient
part of Carleson's interpolation theorem is generalized and an
analogue of a classic interpolation condition is found in the form
$$\sum\limits_{j = k}^{\infty} \mathrm{Re}\,\left( - \xi _{j}
\frac{\lambda _{k} ^{2} - 1}{\lambda _{k} + \overline {\lambda_j}} \right) \le c_{3}, \qquad \xi _{j} : =
\frac{\mathrm{Re}\,\lambda_j} {1 + \left| \lambda_j\right|^{2}}.$$ The necessity of sufficient
conditions is also discussed.
The results are applied to studying a
problem on splitting and searching an analogue of the
identity $2\cos z=\exp(-iz)+\exp(iz)$ for each function of
exponential type in the half-plane. We prove that each
holomorphic in the right-hand half-plane function $f$ obeying the , estimate $\left| {f(z)} \right|\le O(\exp(\sigma|
\mathrm{Im}\,z|))$ can be represented in the form $f=f_1+f_2$ and the functions
$f_1$ and $f_2$ holomorphic in the right-hand half-plane satisfy conditions $$
\left| {f_1(z)} \right|\le O
(\exp(| z|h_{-}(\varphi)))\quad\text{and} \left| {f_2(z)} \right|\le
O(\exp(| z|h_{+}(\varphi))),
$$
where $\sigma\in [0;+\infty)$, $z =
re^{i\varphi}$,
$$h_{ +}
(\varphi ) = \left\{
\begin{aligned}
\sigma {\left| {\sin \varphi} \right|}, \varphi \in \left[0;\frac{\pi}{2}\right],
\\
0, \varphi \in \left[-\frac{\pi}{2};0\right],
\end{aligned}\right.
\qquad h_{ -} (\varphi ) = \left\{
\begin{aligned}
0, \varphi \in \left[0;\frac{\pi}{2}\right],
\\
\sigma {\left| {\sin \varphi} \right|}, \varphi \in \left[ -\frac{\pi}{2};0\right].
\end{aligned}\right.
$$
The paper uses methods works by L. Carleson,
P. Jones, K. Kazaryan, K. Malyutin and other mathematicians.
Keywords:
holomorphic functions of exponential type in the half-plane, splitting of holomorphic functions.
Mots-clés : interpolation
Mots-clés : interpolation
@article{UFA_2019_11_1_a1,
author = {B. V. Vynnyt'skyi and V. L. Sharan and I. B. Sheparovych},
title = {On an interpolation problem in the class of functions of exponential type in a half-plane},
journal = {Ufa mathematical journal},
pages = {19--26},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/}
}
TY - JOUR AU - B. V. Vynnyt'skyi AU - V. L. Sharan AU - I. B. Sheparovych TI - On an interpolation problem in the class of functions of exponential type in a half-plane JO - Ufa mathematical journal PY - 2019 SP - 19 EP - 26 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/ LA - en ID - UFA_2019_11_1_a1 ER -
%0 Journal Article %A B. V. Vynnyt'skyi %A V. L. Sharan %A I. B. Sheparovych %T On an interpolation problem in the class of functions of exponential type in a half-plane %J Ufa mathematical journal %D 2019 %P 19-26 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/ %G en %F UFA_2019_11_1_a1
B. V. Vynnyt'skyi; V. L. Sharan; I. B. Sheparovych. On an interpolation problem in the class of functions of exponential type in a half-plane. Ufa mathematical journal, Tome 11 (2019) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/UFA_2019_11_1_a1/