Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 103-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to hyperbolic systems consisting of $n$ partial differential equations and possessing symmetry drivers, i.e., differential operators mapping any function of one independent variable into a symmetry of the corresponding system. The presence of the symmetry drivers is a feature of the Liouville equation and similar systems. The composition of a differential operator with a symmetry driver is a symmetry driver again if the coefficients of the differential operator belong to the kernel of a total derivative. We prove that the entire set of the symmetry drivers is generated via the above compositions from a basis set consisting of at most $n$ symmetry drivers whose sum of orders is the smallest possible. We also prove that if a system admits a symmetry driver of order $k-1$ and generalized Laplace invariants are well-defined for this system, then the leading coefficient of the symmetry driver belongs to the kernel of the $k$th Laplace invariant. Basing on this statement, after calculating the Laplace invariants of a system, we can obtain the lower bound for the smallest orders of the symmetry drivers for this system. This allows us to check whether we can guarantee that a particular set of the drivers is a basis set.
Keywords: higher symmetries, symmetry drivers, nonlinear hyperbolic partial differential systems, Darboux integrability.
Mots-clés : Laplace invariants
@article{UFA_2018_10_4_a9,
     author = {S. Ya. Startsev},
     title = {Structure of set of symmetries for hyperbolic systems of {Liouville} type and generalized {Laplace} invariants},
     journal = {Ufa mathematical journal},
     pages = {103--110},
     year = {2018},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a9/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants
JO  - Ufa mathematical journal
PY  - 2018
SP  - 103
EP  - 110
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a9/
LA  - en
ID  - UFA_2018_10_4_a9
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants
%J Ufa mathematical journal
%D 2018
%P 103-110
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a9/
%G en
%F UFA_2018_10_4_a9
S. Ya. Startsev. Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 103-110. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a9/

[1] A. V. Zhiber, A. B. Shabat, “Klein-Gordon equations with a nontrivial group”, Sov. Phys. Dokl., 24:8 (1979), 607–609 | MR

[2] A. N. Leznov, A. B. Shabat, “Truncation conditions for perturbation theory series”, Integrable Systems, Bashkir Branch, Acad. Sci. USSR, Ufa, 1982, 34–44 (in Russian)

[3] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | MR | Zbl

[4] D. K. Demskoi, “One Class of Liouville-type systems”, Theor. Math. Phys., 141:2 (2004), 1509–1527 | DOI | DOI | MR | Zbl

[5] S. Ya. Startsev, “Cascade method of Laplace integration for linear hyperbolic systems of equations”, Math. Notes, 83:1 (2008), 97–106 | DOI | DOI | MR | Zbl

[6] F. G. Tricomi, Lezioni sulle equazioni a derivate parziali, Editrice Gheroni, Torino, 1954 (in Italian) | MR | Zbl

[7] A. V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl

[8] A. M. Guryeva, A. V. Zhiber, “Laplace invariants of two-dimensional open Toda lattices”, Theor. Math. Phys., 138:3 (2004), 338–355 | DOI | DOI | MR | Zbl

[9] A. M. Guryeva, A. V. Zhiber, Laplace invariants of Toda lattices with the exceptional Cartan matrices, 2005, 30 pp., arXiv: nlin/0512001 [nlin.SI]

[10] A. V. Zhiber, S. Ya. Startsev, “Integrals, solutions, and existence Problems for Laplace transformations of linear hyperbolic systems”, Math. Notes, 74:6 (2003), 803–811 | DOI | DOI | MR | MR | Zbl

[11] V. V. Sokolov, S. Ya. Startsev, “Symmetries of nonlinear hyperbolic systems of the Toda chain type”, Theor. Math. Phys., 155:2 (2008), 802–811 | DOI | DOI | MR | Zbl