Mots-clés : Laplace invariants
@article{UFA_2018_10_4_a9,
author = {S. Ya. Startsev},
title = {Structure of set of symmetries for hyperbolic systems of {Liouville} type and generalized {Laplace} invariants},
journal = {Ufa mathematical journal},
pages = {103--110},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a9/}
}
TY - JOUR AU - S. Ya. Startsev TI - Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants JO - Ufa mathematical journal PY - 2018 SP - 103 EP - 110 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a9/ LA - en ID - UFA_2018_10_4_a9 ER -
S. Ya. Startsev. Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 103-110. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a9/
[1] A. V. Zhiber, A. B. Shabat, “Klein-Gordon equations with a nontrivial group”, Sov. Phys. Dokl., 24:8 (1979), 607–609 | MR
[2] A. N. Leznov, A. B. Shabat, “Truncation conditions for perturbation theory series”, Integrable Systems, Bashkir Branch, Acad. Sci. USSR, Ufa, 1982, 34–44 (in Russian)
[3] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | MR | Zbl
[4] D. K. Demskoi, “One Class of Liouville-type systems”, Theor. Math. Phys., 141:2 (2004), 1509–1527 | DOI | DOI | MR | Zbl
[5] S. Ya. Startsev, “Cascade method of Laplace integration for linear hyperbolic systems of equations”, Math. Notes, 83:1 (2008), 97–106 | DOI | DOI | MR | Zbl
[6] F. G. Tricomi, Lezioni sulle equazioni a derivate parziali, Editrice Gheroni, Torino, 1954 (in Italian) | MR | Zbl
[7] A. V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | DOI | MR | Zbl
[8] A. M. Guryeva, A. V. Zhiber, “Laplace invariants of two-dimensional open Toda lattices”, Theor. Math. Phys., 138:3 (2004), 338–355 | DOI | DOI | MR | Zbl
[9] A. M. Guryeva, A. V. Zhiber, Laplace invariants of Toda lattices with the exceptional Cartan matrices, 2005, 30 pp., arXiv: nlin/0512001 [nlin.SI]
[10] A. V. Zhiber, S. Ya. Startsev, “Integrals, solutions, and existence Problems for Laplace transformations of linear hyperbolic systems”, Math. Notes, 74:6 (2003), 803–811 | DOI | DOI | MR | MR | Zbl
[11] V. V. Sokolov, S. Ya. Startsev, “Symmetries of nonlinear hyperbolic systems of the Toda chain type”, Theor. Math. Phys., 155:2 (2008), 802–811 | DOI | DOI | MR | Zbl