Spectral asymptotics for fourth order differential operator with two turning points
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 24-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to studying the asymptotics of the spectrum of a self-adjoint operator $T$ generated by a fourth-order differential expression in the space $L^{2} (0,+\infty)$ under the assumption that the coefficients of the expression have a power growth at infinity such that: a) the deficiency index of the corresponding minimal operator is $(2,2)$, b) for sufficiently large positive values of a spectral parameter, the differential equation $ Ty = \lambda y $ has two turning points: a finite one and $+\infty$, c) the roots of the characteristic equation grow not with the same rate. The latter assumption leads one to significant difficulties in studying the asymptotics of the counting function for the spectrum by the traditional Carleman–Kostyuchenko method based on estimates of the resolvent far from the spectrum and Tauberian theorems. Curiously enough, the method of reference equations used to solve the more subtle problem of finding asymptotic expansions of the eigenvalues themselves, and therefore more sensitive (compared to the Carleman–Kostyuchenko method) to the behavior of the coefficients in the differential expression is more effective in the considered situation: imposing some constraints on coefficients such as smoothness and regular growth at infinity, we obtain an asymptotic equation for the spectrum of the operator $T$. This equation allows one to write out the first few terms of the asymptotic expansion for the eigenvalues of the operator $T$ in the case when the coefficients have a power growth. We also note that so far the method of reference equations has been used only in the case of the presence of the only turning point.
Keywords: differential operators, spectral asymptotics, turning point, singular numbers.
@article{UFA_2018_10_4_a2,
     author = {L. G. Valiullina and Kh. K. Ishkin and R. I. Marvanov},
     title = {Spectral asymptotics for fourth order differential operator with two turning points},
     journal = {Ufa mathematical journal},
     pages = {24--39},
     year = {2018},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a2/}
}
TY  - JOUR
AU  - L. G. Valiullina
AU  - Kh. K. Ishkin
AU  - R. I. Marvanov
TI  - Spectral asymptotics for fourth order differential operator with two turning points
JO  - Ufa mathematical journal
PY  - 2018
SP  - 24
EP  - 39
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a2/
LA  - en
ID  - UFA_2018_10_4_a2
ER  - 
%0 Journal Article
%A L. G. Valiullina
%A Kh. K. Ishkin
%A R. I. Marvanov
%T Spectral asymptotics for fourth order differential operator with two turning points
%J Ufa mathematical journal
%D 2018
%P 24-39
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a2/
%G en
%F UFA_2018_10_4_a2
L. G. Valiullina; Kh. K. Ishkin; R. I. Marvanov. Spectral asymptotics for fourth order differential operator with two turning points. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 24-39. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a2/

[1] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “Properties of a Subclass of Avakumovic Functions and Their Generalized Inverses”, Ukr. Math. Jour., 54:2 (2002), 179–206 | DOI | MR | Zbl

[2] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “On some extensions of Karamata's theory and their applications”, Publ. Inst. Math. Nouv. Ser., 80(94) (2006), 59–96 | DOI | MR | Zbl

[3] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 33–53

[4] E. Seneta, Regularly varying functions, Lect. Notes Math., 508, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[5] N. H. Bingham, C. M. Goldie, J.Ł. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987, 491 pp. | MR | Zbl

[6] T. Carleman, “Über die asymptotische Verteilung der Eigenverte partieller Differentialgleichungen”, Ber. Sachs. Acad. Wiss. Leipzig, 88 (1936), 119–132

[7] A.G. Kostyuchenko, I.S. Sargsyan, Distribution of eigenvalues. Selfadjoint ordinary differential operators, Nauka, M., 1979 (in Russian) | MR

[8] A.A. Shkalikov, “Theorems of Tauberian type on the distribution of zeros of holomorphic functions”, Math. USSR-Sb., 51:2 (1985), 315–344 | DOI | MR | Zbl | Zbl

[9] Kh. K. Ishkin, “Conditions of spectrum localization for operators not close to self-adjoint operators”, Dokl. Math., 97:2 (2018), 170–173 | DOI | MR | Zbl

[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969; M. A. Naimark, Linear differential operators, v. I, Frederick Ungar Publishing Co., New York, 1967 ; v. II, 1968 | MR | Zbl | Zbl

[11] M. V. Fedoryuk, Asymptotic analysis: linear ordinary differential equations, Springer-Verlag, Berlin, 1993 | MR | Zbl

[12] Kh. Ishkin, “On continuity of the spectrum of a singular quasi-differential operator with respect to a parameter”, Eurasian Math. J., 2:3 (2011), 67–81 | MR | Zbl

[13] M. Reed, B. Simon, Methods of modern mathematical physics, v. 4, Academic Press, New York, 1978 | MR | Zbl

[14] Ja. T. Sultanaev, “Asymptotic behavior of the spectrum of singular differential operators in the indefinite case”, Mosc. Univ. Math. Bull., 30:3–4 (1975), 15–22 | MR | Zbl | Zbl

[15] Kh. K. Ishkin, “Asymptotic behavior of the spectrum and the regularized trace of higher-order singular differential operators”, Differ. Equat., 31:10 (1995), 1622–1632 | MR | Zbl

[16] G. V. Rozenblum, M. Z. Solomyak, M. A. Shubin, “Spectral theory of differential operators”, Partial differential equations-7, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 64, 1989, 5–242 (in Russian)

[17] Ya. T. Sultanaev, “A two-sided Tauberian theorem for ratios”, Soviet Math., 18:1 (1974), 84–91 | MR | Zbl

[18] R. E. Langer, “The asymptotic solutions of ordinary linear differential equations of the second order with special reference to the Stokes' phenomenon”, Bull. Amer. Math. Soc., 40 (1934), 545–582 | DOI | MR

[19] M. A. Evgrafov, M. V. Fedoryuk, “Asymptotic behaviour as $ \lambda \to \infty$ of the solution of the equation $ w''(z) - p(z, \lambda)w(z) = 0$ in the complex $ z$-plane”, Russ. Math. Surv., 21:1 (1966), 1–48 | DOI | MR | Zbl

[20] Kh. K. Ishkin, “On the spectral instability of the Sturm–Liouville operator with a complex potential”, Diff. Eqs., 45:4 (2009), 494–509 | DOI | MR | Zbl

[21] Kh. K. Ishkin, Kh. Kh. Murtazin, “Asymptotics for the eigenvalues of a fourth order differential operator in a “degenerate” case”, Ufa Math. J., 8:3 (2016), 79–94 | DOI | MR

[22] H. Bateman, A. Erdélyi, Higher transcendental functions, v. 2, MC Graw-Hill Book Co., New York, 1974

[23] E. B. Davies, “Wild spectral behaviour on anharmonic oscillators”, Bull. London Math. Soc., 32:4 (2000), 432–438 | DOI | MR | Zbl

[24] V. B. Lidskii, “Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectrum”, Trudy MMO, 8, 1959, 83–120 (in Russian) | MR

[25] V. B. Lidskii, “A non-selfadjoint operator of Sturm–Liouville type with a discrete spectrum”, Trudy MMO, 9, 1960, 45–79 (in Russian) | MR

[26] E. B. Davies, “Pseudo-spectra, the harmonic oscillator and complex resonances”, Proc. R. Soc. Lond., 455 (1999), 585–599 | DOI | MR | Zbl

[27] S. Roch, B. Silberman, “$C^*$-algebra techniques in numerical analysis”, J. Operator Theory, 35 (1996), 221–280 | MR

[28] Kh. K. Ishkin, “A localization criterion for the eigenvalues of a spectrally unstable operator”, Dokl. Math., 80:3 (2009), 829–832 | DOI | MR | Zbl

[29] K. Kh. Boimatov, “Asymptotic behavior of eigenvalues of non-self-adjoint operators”, Funct. Anal. Appl., 11:4 (1977), 305–306 | DOI | MR | MR