@article{UFA_2018_10_4_a2,
author = {L. G. Valiullina and Kh. K. Ishkin and R. I. Marvanov},
title = {Spectral asymptotics for fourth order differential operator with two turning points},
journal = {Ufa mathematical journal},
pages = {24--39},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a2/}
}
TY - JOUR AU - L. G. Valiullina AU - Kh. K. Ishkin AU - R. I. Marvanov TI - Spectral asymptotics for fourth order differential operator with two turning points JO - Ufa mathematical journal PY - 2018 SP - 24 EP - 39 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a2/ LA - en ID - UFA_2018_10_4_a2 ER -
L. G. Valiullina; Kh. K. Ishkin; R. I. Marvanov. Spectral asymptotics for fourth order differential operator with two turning points. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 24-39. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a2/
[1] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “Properties of a Subclass of Avakumovic Functions and Their Generalized Inverses”, Ukr. Math. Jour., 54:2 (2002), 179–206 | DOI | MR | Zbl
[2] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “On some extensions of Karamata's theory and their applications”, Publ. Inst. Math. Nouv. Ser., 80(94) (2006), 59–96 | DOI | MR | Zbl
[3] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 33–53
[4] E. Seneta, Regularly varying functions, Lect. Notes Math., 508, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl
[5] N. H. Bingham, C. M. Goldie, J.Ł. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987, 491 pp. | MR | Zbl
[6] T. Carleman, “Über die asymptotische Verteilung der Eigenverte partieller Differentialgleichungen”, Ber. Sachs. Acad. Wiss. Leipzig, 88 (1936), 119–132
[7] A.G. Kostyuchenko, I.S. Sargsyan, Distribution of eigenvalues. Selfadjoint ordinary differential operators, Nauka, M., 1979 (in Russian) | MR
[8] A.A. Shkalikov, “Theorems of Tauberian type on the distribution of zeros of holomorphic functions”, Math. USSR-Sb., 51:2 (1985), 315–344 | DOI | MR | Zbl | Zbl
[9] Kh. K. Ishkin, “Conditions of spectrum localization for operators not close to self-adjoint operators”, Dokl. Math., 97:2 (2018), 170–173 | DOI | MR | Zbl
[10] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969; M. A. Naimark, Linear differential operators, v. I, Frederick Ungar Publishing Co., New York, 1967 ; v. II, 1968 | MR | Zbl | Zbl
[11] M. V. Fedoryuk, Asymptotic analysis: linear ordinary differential equations, Springer-Verlag, Berlin, 1993 | MR | Zbl
[12] Kh. Ishkin, “On continuity of the spectrum of a singular quasi-differential operator with respect to a parameter”, Eurasian Math. J., 2:3 (2011), 67–81 | MR | Zbl
[13] M. Reed, B. Simon, Methods of modern mathematical physics, v. 4, Academic Press, New York, 1978 | MR | Zbl
[14] Ja. T. Sultanaev, “Asymptotic behavior of the spectrum of singular differential operators in the indefinite case”, Mosc. Univ. Math. Bull., 30:3–4 (1975), 15–22 | MR | Zbl | Zbl
[15] Kh. K. Ishkin, “Asymptotic behavior of the spectrum and the regularized trace of higher-order singular differential operators”, Differ. Equat., 31:10 (1995), 1622–1632 | MR | Zbl
[16] G. V. Rozenblum, M. Z. Solomyak, M. A. Shubin, “Spectral theory of differential operators”, Partial differential equations-7, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 64, 1989, 5–242 (in Russian)
[17] Ya. T. Sultanaev, “A two-sided Tauberian theorem for ratios”, Soviet Math., 18:1 (1974), 84–91 | MR | Zbl
[18] R. E. Langer, “The asymptotic solutions of ordinary linear differential equations of the second order with special reference to the Stokes' phenomenon”, Bull. Amer. Math. Soc., 40 (1934), 545–582 | DOI | MR
[19] M. A. Evgrafov, M. V. Fedoryuk, “Asymptotic behaviour as $ \lambda \to \infty$ of the solution of the equation $ w''(z) - p(z, \lambda)w(z) = 0$ in the complex $ z$-plane”, Russ. Math. Surv., 21:1 (1966), 1–48 | DOI | MR | Zbl
[20] Kh. K. Ishkin, “On the spectral instability of the Sturm–Liouville operator with a complex potential”, Diff. Eqs., 45:4 (2009), 494–509 | DOI | MR | Zbl
[21] Kh. K. Ishkin, Kh. Kh. Murtazin, “Asymptotics for the eigenvalues of a fourth order differential operator in a “degenerate” case”, Ufa Math. J., 8:3 (2016), 79–94 | DOI | MR
[22] H. Bateman, A. Erdélyi, Higher transcendental functions, v. 2, MC Graw-Hill Book Co., New York, 1974
[23] E. B. Davies, “Wild spectral behaviour on anharmonic oscillators”, Bull. London Math. Soc., 32:4 (2000), 432–438 | DOI | MR | Zbl
[24] V. B. Lidskii, “Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectrum”, Trudy MMO, 8, 1959, 83–120 (in Russian) | MR
[25] V. B. Lidskii, “A non-selfadjoint operator of Sturm–Liouville type with a discrete spectrum”, Trudy MMO, 9, 1960, 45–79 (in Russian) | MR
[26] E. B. Davies, “Pseudo-spectra, the harmonic oscillator and complex resonances”, Proc. R. Soc. Lond., 455 (1999), 585–599 | DOI | MR | Zbl
[27] S. Roch, B. Silberman, “$C^*$-algebra techniques in numerical analysis”, J. Operator Theory, 35 (1996), 221–280 | MR
[28] Kh. K. Ishkin, “A localization criterion for the eigenvalues of a spectrally unstable operator”, Dokl. Math., 80:3 (2009), 829–832 | DOI | MR | Zbl
[29] K. Kh. Boimatov, “Asymptotic behavior of eigenvalues of non-self-adjoint operators”, Funct. Anal. Appl., 11:4 (1977), 305–306 | DOI | MR | MR