A Taylor–Dirichlet series with no singularities on its abscissa of convergence
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 142-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

G. Pólya proved that given a sequence of positive real numbers $\Lambda=\{\lambda_n\}_{n=1}^{\infty}$ of a density $d$ and satisfying the gap condition $\inf_{n\in\mathbb{N}}(\lambda_{n+1}-\lambda_n)>0$, the Dirichlet series $\sum_{n=1}^{\infty}c_ne^{\lambda_n z}$ has at least one singularity in each open interval whose length exceeds $2\pi d$ and lies on the abscissa of convergence. This raises the question whether the same result holds for a Taylor–Dirichlet series of the form $$ g(z)=\sum_{n=1}^{\infty} \left(\sum_{k=0}^{\mu_n-1}c_{n,k} z^k\right) e^{\lambda_n z},\quad c_{n,k}\in \mathbb{C} $$ when its associated multiplicity-sequence $\Lambda=\{\lambda_n,\mu_n\}_{n=1}^{\infty}$ $$ \{\lambda_n,\mu_n\}_{n=1}^{\infty}:=\{\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}_{\mu_2 - times},\dots, \underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}_{\mu_k - times},\dots\} $$ has the following two properties: $\Lambda$ has density $d$, that is, $\sum_{\lambda_n\le t}\mu_n/t\to d$ as $t\to\infty$, $\lambda_n$ satisfy the gap condition $\inf_{n\in\mathbb{N}}(\lambda_{n+1}-\lambda_n)>0$. In this article we present a counterexample. We prove that for any non-negative real number $d$ there exists a multiplicity-sequence $\Lambda=\{\lambda_n,\mu_n\}_{n=1}^{\infty}$ having properties (1) and (2), but with unbounded multiplicities $\mu_n$, such that its Krivosheev characteristic $S_{\Lambda}$ is negative. For this $\Lambda$, and based on a result obtained by O.A. Krivosheeva, we show that for any $a\in\mathbb{R}$, there exists a Taylor–Dirichlet series $g(z)$ whose abscissa of convergence is the line $\mathrm{Re}\, z=a$, such that $g(z)$ has no singularities on this line.
Keywords: Taylor–Dirichlet series, singularities, Fabry–Pólya.
@article{UFA_2018_10_3_a10,
     author = {E. Zikkos},
     title = {A {Taylor{\textendash}Dirichlet} series with no singularities on its abscissa of~convergence},
     journal = {Ufa mathematical journal},
     pages = {142--148},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a10/}
}
TY  - JOUR
AU  - E. Zikkos
TI  - A Taylor–Dirichlet series with no singularities on its abscissa of convergence
JO  - Ufa mathematical journal
PY  - 2018
SP  - 142
EP  - 148
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a10/
LA  - en
ID  - UFA_2018_10_3_a10
ER  - 
%0 Journal Article
%A E. Zikkos
%T A Taylor–Dirichlet series with no singularities on its abscissa of convergence
%J Ufa mathematical journal
%D 2018
%P 142-148
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a10/
%G en
%F UFA_2018_10_3_a10
E. Zikkos. A Taylor–Dirichlet series with no singularities on its abscissa of convergence. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 142-148. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a10/

[1] P. Koosis, The logarithmic integral, v. II, Cambridge Studies in Advanced Mathematics, 21, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[2] N. Arakelian, W. Luh, J. Müller, “On the localization of singularities of Lacunar power series”, Complex Var. and Ell. Eqns., 52:7 (2007), 561–573 | DOI | MR | Zbl

[3] A. Eremenko, “Densities in Fabry's theorem”, Illinois J. Math., 52:4 (2008), 1277–1290 | MR | Zbl

[4] A. Eremenko, “A version of Fabry's theorem for power series with regularly varying coefficients”, Proc. Amer. Math. Soc., 136:12 (2008), 4389–4394 | DOI | MR | Zbl

[5] R. P. Boas Jr., Entire functions, Academic Press, New York, 1954 | MR | Zbl

[6] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940 | MR

[7] V. Bernstein, Leçons sur les progrès récents de la théorie des séries de Dirichlet, Gauthier-Villars, Paris, 1933

[8] S. Mandelbrojt, Dirichlet series. Principles and methods, D. Reidel Publishing Co., Dordrecht, 1972 | MR | Zbl

[9] St. Petersburg Math. J., 23:2 (2012), 321–350 | DOI | MR

[10] M.G. Valiron, “Sur les solutions des équations différentielles linéaires d'ordre infini et á coefficients constants”, Ann. Ecole Norm. (3), 46 (1929), 25–53 | MR | Zbl

[11] Izv. Math., 68:2 (2004), 291–353 | DOI | DOI | MR | Zbl