@article{UFA_2018_10_2_a9,
author = {Ashok Rathod},
title = {Nevanlinna's five-value theorem for algebroid functions},
journal = {Ufa mathematical journal},
pages = {127--132},
year = {2018},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a9/}
}
Ashok Rathod. Nevanlinna's five-value theorem for algebroid functions. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 127-132. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a9/
[1] E. Ullrich, “Über den Einfluß der verzweigtheit einer algebloide auf ihre wertvertellung”, J. Reine Angew. Math., 1932:167 (1932), 198–220 | MR
[2] G. Valiron, “Sur quelques propriétés des fonctions algébroides”, Compt. Rend. Math., 189 (1929), 824–826 | Zbl
[3] N. Baganas, “Sur les valeurs algébriques dune fonctions algebroldes et les intégrales pseudo-abelinnes”, Annales Ecole Norm. Sup. Ser. 3, 66 (1949), 161–208 | DOI | MR | Zbl
[4] H.S. Gopalkrishna, S.S. Bhooanurmath, “Uniqueness theorems for meromorphic functions”, Math. Scand., 39 (1976), 125–130 | DOI | MR
[5] Lahiri Indrajit, Pal Rupa, “A note on Nevanlinna's five value theorerm”, Bull. Korean Math. Soc., 52:2 (2015), 345–350 | DOI | MR | Zbl
[6] Yu-Zan He, Ye-Zhou Li, “Some results on algebroid functions”, Comp. Variab. Ellip. Equat., 43:3-4 (2001), 299–313 | MR
[7] S. Daochun, G. Zongsheng, “On the operation of algebroid functions”, Acta Math. Sci., 30:1 (2010), 247–256 | DOI | MR | Zbl
[8] S. Daochun, G. Zongsheng, Value disribution theory of algebroid functions, Science Press, Beijing, 2014
[9] Yu-Zan He, Xiu-Zhi Xiao, Algebroid functions and Ordinarry Difference Equations, Science Press, Beijing, 1988
[10] S. Daochun, G. Zongsheng, “Theorems for algebroid functions”, Acta Math. Sinica, 49:5 (2006), 1–6 | MR
[11] Y. Hongxun, “On the multiple values and uniqueness of algebroid functions”, Chinese J. Eng. Math., 8 (1991), 1–8
[12] W.K. Hayman, Meromorphic functions, Oxford University Press, Oxford, 1964 | MR | Zbl
[13] F. Minglang, “Unicity theorem for algebroid functions”, Acta. Math. Sinica, 3:6 (1993), 217–222
[14] Pingyuan Zhang, Peichu Hu, “On uniqueness for algebroid functions of finite order”, Acta. Math. Sinica, 35:3 (2015), 630–638 | MR | Zbl
[15] G.S. Prokoporich, “Fix-points of meromorphic or entire functions”, Ukrainian Math. J., 25:2 (1973), 248–260 | MR
[16] Z. Qingcai, “Uniqueness of algebroid functions”, Math. Pract. Theory, 43:1 (2003), 183–187
[17] Cao Tingbin, Yi Hongxun, “On the uniqueness theory of algebroid functions”, Southest Asian Bull. Math., 33:1 (2009), 25–39 | MR | Zbl
[18] Zu-Xing Xuan, ZongG-Sheng Gao, “Uniqueness theorems for algebroid functions”, Compl. Variab. Ellipt. Equat., 51:7 (2006), 701–712 | DOI | MR | Zbl
[19] C.C. Yang, H.X. Yi, Uniqueness theory of meromorphic functions, Math. Appl., 557, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl
[20] H.X. Yi, “The multiple values of meromorphic functions and uniqueness”, Chinese Ann. Math. Ser. A, 10:4 (1989), 421–427 | MR | Zbl
[21] R.S. Dyavanal, Ashok Rathod, “Some generalisation of Nevanlinna's five-value theorem algebroid functions on annuli”, Asian J. Math. Comp. Resear., 20:2 (2017), 85–95
[22] R.S. Dyavanal, Ashok Rathod, “Nevanlinna's five-value heorem for derivatives of meromorphic functions sharing values on annuli”, Asian J. Math. Comp. Resear., 20:1 (2017), 13–21
[23] R.S. Dyavanal, Ashok Rathod, “Unicity theorem for algebroid functions related to multiple values and derivatives on annuli”, Int. J. Fuzzy Math. Arch., 13:1 (2017), 25–39 | MR
[24] Ashok Rathod, “Several uniqueness theorems for algebroid functions”, J. Anal., 25:2 (2017), 203–213 | DOI | MR | Zbl
[25] Ashok Rathod, “The multiple values of algebroid functions and uniqueness”, Asian J. Math. Comp. Resear., 14:2 (2016), 150–157 | MR
[26] Ashok Rathod, “The multiple values of algebroid functions and uniqueness on annuli”, Konoralf J. Math., 5:2 (2017), 216–227 | MR | Zbl
[27] Ashok Rathod, “On the deficiencies of algebriod functions and their differential polynomials”, J. Basic Appl. Resear. Int., 1:1 (2016), 1–11