Nevanlinna's five-value theorem for algebroid functions
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 127-132

Voir la notice de l'article provenant de la source Math-Net.Ru

By using the second main theorem of the algebroid function, we study the following problem. Let $W_{1}(z)$ and $W_{2}(z)$ be two $\nu$-valued non-constant algebroid functions, $a_{j}\,(j=1,2,\ldots,q)$ be $q\geq 4\nu+1$ distinct complex numbers or $\infty$. Suppose that ${k_{1}\geq k_{2}\geq \ldots\geq k_{q},m}$ are positive integers or $\infty$, $1\leq m\leq q$ and $\delta_{j} \geq 0$, $j=1,2,\ldots,q$, are such that \begin{equation*} \left(1+\frac{1}{k_{m}}\right)\sum_{j=m}^{q}\frac{1}{1+k_{j}}+3\nu +\sum_{j=1}^{q}\delta_{j}(q-m-1)\left(1+\frac{1}{k_{m}}\right)+m. \end{equation*} Let $B_{j}=\overline{E}_{k_{j}}(a_{j},f)\backslash\overline{E}_{k_{j}}(a_{j},g)$ for $j=1,2,\ldots,q.$ If \begin{equation*} \overline{N}_{B_{j}}(r,\frac{1}{W_{1}-a_{j}})\leq \delta_{j}T(r,W_{1}) \end{equation*} and \begin{equation*} \liminf_{r\rightarrow \infty}^{}\frac{\sum\limits_{j=1}^{q} \overline{N}_{k_{j}}(r,\frac{1}{W_{1}-a_{j}})} {\sum\limits_{j=1}^{q}\overline{N}_{k_{j}}(r,\frac{1}{W_{2}-a_{j}})}> \frac{\nu k_{m}}{(1+k_{m})\sum\limits_{j=1}^{q} \frac{k_{j}}{k_{j}+1}-2\nu(1+k_{m}) +(m-2\nu-\sum\limits_{j=1}^{q}\delta_{j})k_{m}}, \end{equation*} then $W_{1}(z)\equiv W_{2}(z).$ This result improves and generalizes the previous results given by Xuan and Gao.
Keywords: value distribution theory, Nevanlinna theory, algebroid functions, uniqueness.
@article{UFA_2018_10_2_a9,
     author = {Ashok Rathod},
     title = {Nevanlinna's five-value theorem  for algebroid functions},
     journal = {Ufa mathematical journal},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a9/}
}
TY  - JOUR
AU  - Ashok Rathod
TI  - Nevanlinna's five-value theorem  for algebroid functions
JO  - Ufa mathematical journal
PY  - 2018
SP  - 127
EP  - 132
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a9/
LA  - en
ID  - UFA_2018_10_2_a9
ER  - 
%0 Journal Article
%A Ashok Rathod
%T Nevanlinna's five-value theorem  for algebroid functions
%J Ufa mathematical journal
%D 2018
%P 127-132
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a9/
%G en
%F UFA_2018_10_2_a9
Ashok Rathod. Nevanlinna's five-value theorem  for algebroid functions. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 127-132. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a9/