On two-sided estimate for norm of Fourier operator
Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 94-114

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work we study the behavior of Lebesgue constant $L_n$ of the Fourier operator defined in the space of continuous $2\pi$-periodic functions. The known integral representations expressed in terms of the improper integrals are too cumbersome. They are complicated both for theoretical and practical purposes.We obtain a new integral representation for $L_n$ as a sum of Riemann integrals defined on bounded converging domains. We establish equivalent integral representations and provide strict two-sided estimates for their components. Then we provide a two-sided estimate for the Lebesgue constant. We solve completely the problem on the upper bound of the constant $L_n$. We improve its known lower bound.
Keywords: partial sums of Fourier series, norm of Fourier operator, asymptotic formula, extremal problem.
Mots-clés : Lebesgue constant, estimate for Lebesgue constant
@article{UFA_2018_10_1_a7,
     author = {I. A. Shakirov},
     title = {On two-sided estimate  for norm of {Fourier} operator},
     journal = {Ufa mathematical journal},
     pages = {94--114},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - On two-sided estimate  for norm of Fourier operator
JO  - Ufa mathematical journal
PY  - 2018
SP  - 94
EP  - 114
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/
LA  - en
ID  - UFA_2018_10_1_a7
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T On two-sided estimate  for norm of Fourier operator
%J Ufa mathematical journal
%D 2018
%P 94-114
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/
%G en
%F UFA_2018_10_1_a7
I. A. Shakirov. On two-sided estimate  for norm of Fourier operator. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 94-114. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/