On two-sided estimate for norm of Fourier operator
Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 94-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we study the behavior of Lebesgue constant $L_n$ of the Fourier operator defined in the space of continuous $2\pi$-periodic functions. The known integral representations expressed in terms of the improper integrals are too cumbersome. They are complicated both for theoretical and practical purposes.We obtain a new integral representation for $L_n$ as a sum of Riemann integrals defined on bounded converging domains. We establish equivalent integral representations and provide strict two-sided estimates for their components. Then we provide a two-sided estimate for the Lebesgue constant. We solve completely the problem on the upper bound of the constant $L_n$. We improve its known lower bound.
Keywords: partial sums of Fourier series, norm of Fourier operator, asymptotic formula, extremal problem.
Mots-clés : Lebesgue constant, estimate for Lebesgue constant
@article{UFA_2018_10_1_a7,
     author = {I. A. Shakirov},
     title = {On two-sided estimate for norm of {Fourier} operator},
     journal = {Ufa mathematical journal},
     pages = {94--114},
     year = {2018},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - On two-sided estimate for norm of Fourier operator
JO  - Ufa mathematical journal
PY  - 2018
SP  - 94
EP  - 114
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/
LA  - en
ID  - UFA_2018_10_1_a7
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T On two-sided estimate for norm of Fourier operator
%J Ufa mathematical journal
%D 2018
%P 94-114
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/
%G en
%F UFA_2018_10_1_a7
I. A. Shakirov. On two-sided estimate for norm of Fourier operator. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 94-114. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a7/

[1] Natanson I. P., Konstruktivnaya teoriya funktsii, Gostekhizdat, M.–L., 1949 | MR

[2] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR

[3] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[5] L. Fejér, “Lebesguesche konstanten und divergente Fourierreihen”, J. Reine Angew. Math, 1910:138, 22–53 | MR

[6] L. Fejér, “Sur les singularités de la série de Fourier des fonctions continues”, Ann. de l'Éc. Norm. Ser. 3, 1911:28, 63–103 | MR

[7] G. Szegö, “Über die Lebesgueschen konstanten bei den Fourierchen reihen”, Math. Z., 9:1–2 (1921), 163–166 | DOI | MR

[8] G.H. Watson, “The constant of Landau and Lebesgue”, Quart. J. Math., Oxford. Ser. 1, 1930, 310–318 | DOI

[9] Korneichuk I. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[10] G.H. Hardy, “Note on Lebesgues constants in the theory of Fourier series”, J. London Math. Soc., s1–17:1 (1942), 4–13 | DOI | MR

[11] Nikolskii S. M., “O lineinykh metodakh summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 12:3 (1948), 259–278

[12] Stechkin S. B., “Neskolko zamechanii o trigonometricheskikh polinomakh”, Uspekhi matem. nauk, 10:1 (1955), 159–166 | MR

[13] Galkin P. V., “Otsenki dlya konstant Lebega”, Tr. MIAN SSSR, 109, 1971, 3–5 | MR

[14] Akhiezer N. I., Lektsii po teorii approksimatsii, Mir, M., 1965 | MR

[15] Zhuk V. V., Natanson G. I., Trigonometricheskie ryady i elementy teorii approksimatsii, Izd-vo Leningr. un-ta, 1983 | MR

[16] Natanson G. I., “Ob otsenke konstant Lebega summ Valle-Pussena”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin, 1986

[17] Sandakova S. L., Priblizhenie funktsii summami Fure po trigonometricheskim ortogonalnym polinomam, Dis. ... kand. fiz.-mat. nauk, Uralskii gos. un-t im. A.M. Gorkogo, Ekaterinburg, 2005, 75 pp.

[18] Badkov V. M., Vvedenie v edinuyu teoriyu algebraicheskikh i trigonometricheskikh ortogonalnykh polinomov, uchebnoe posobie, Izd-vo Ural. un-ta, Ekaterinburg, 2006 | MR

[19] Motornyi V. P., Goncharov S. V., Nitiema P. K., “O skhodimosti v srednem ryadov Fure-Yakobi”, Dopovidi Natsionalnoi akademii nauk Ukraini, 2010, no. 3, 35–55

[20] Badkov V. M., “Otsenki funktsii Lebega summ Fure po trigonometricheskim polinomam, ortogonalnym s vesom, ne prinadlezhaschim prostranstvam”, Trudy IMM UrO RAN, 17, no. 3, 2011, 71–82

[21] Trynin A. Yu., “Otsenki funktsii Lebega i formula Nevai dlya sink-priblizhenii nepreryvnykh funktsii na otrezke”, Sib. matem. zh., 48:5 (2007), 1155–1166 | MR

[22] Shakirov I. A., “Polnoe issledovanie funktsii Lebega, sootvetstvuyuschikh klassicheskim interpolyatsionnym polinomam Lagranzha”, Izv. VUZov. Matem., 2011, no. 10, 80–88

[23] Shakirov I. A., “O funktsiyakh Lebega, sootvetstvuyuschikh semeistvu interpolyatsionnykh polinomov Lagranzha”, Izv. VUZov. Matem., 2013, no. 7, 77–89

[24] Shakirov I. A., “O vliyanii vybora uzlov lagranzhevoi interpolyatsii na tochnye i priblizhennye znacheniya konstant Lebega”, Sib. matem. zh., 55:6 (2014), 1404–1423 | MR