Self-adjoint restrictions of maximal operator on graph
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we study differential operators on arbitrary geometric graphs without loops. We extend the known results for differential operators on an interval to the differential operators on the graphs. In order to define properly the maximal operator on a given graph, we need to choose a set of boundary vertices. The non-boundary vertices are called interior vertices. We stress that the maximal operator on a graph is determined not only by the given differential expressions on the edges, but also by the Kirchhoff conditions at the interior vertices of the graph. For the introduced maximal operator we prove an analogue of the Lagrange formula. We provide an algorithm for constructing adjoint boundary forms for an arbitrary set of boundary conditions. In the conclusion of the paper, we present a complete description of all self-adjoint restrictions of the maximal operator.
Keywords: Directed graph, Kirchhoff conditions, self-adjoint restriction of an operator, maximal operator.
@article{UFA_2017_9_4_a3,
     author = {L. K. Zhapsarbayeva and B. E. Kanguzhin and M. N. Konyrkulzhayeva},
     title = {Self-adjoint restrictions of maximal operator on graph},
     journal = {Ufa mathematical journal},
     pages = {35--43},
     year = {2017},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a3/}
}
TY  - JOUR
AU  - L. K. Zhapsarbayeva
AU  - B. E. Kanguzhin
AU  - M. N. Konyrkulzhayeva
TI  - Self-adjoint restrictions of maximal operator on graph
JO  - Ufa mathematical journal
PY  - 2017
SP  - 35
EP  - 43
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a3/
LA  - en
ID  - UFA_2017_9_4_a3
ER  - 
%0 Journal Article
%A L. K. Zhapsarbayeva
%A B. E. Kanguzhin
%A M. N. Konyrkulzhayeva
%T Self-adjoint restrictions of maximal operator on graph
%J Ufa mathematical journal
%D 2017
%P 35-43
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a3/
%G en
%F UFA_2017_9_4_a3
L. K. Zhapsarbayeva; B. E. Kanguzhin; M. N. Konyrkulzhayeva. Self-adjoint restrictions of maximal operator on graph. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 35-43. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a3/

[1] Pokornyi Yu. V., “O spektre nekotorykh zadach na grafakh”, Uspekhi mat. nauki, 42:4 (1987), 128–129

[2] Pokornyi Yu. V., Penkin O. M., “O kraevoi zadache na grafe”, Differentsialnye uravneniya, 24 (1988), 701–703 | MR

[3] Pokornyi Yu. V., Priyadiev V. L., Al-Obeid A., “Ob ostsilyatsionnykh svoistvakh spektra kraevoi zadachi na grafe”, Matem. zametki, 60:3 (1996), 468–469 | DOI | MR

[4] Pokornyi Yu. V., Priyadiev V. L., “Nekotorye problemy kachestvennoi teorii Shturma–Liuvillya na prostranstvennykh setyakh”, Uspekhi mat. nauki, 59:6 (2004), 115–150 | DOI

[5] Pokornyi Yu. V., Penkin O. M., Priyadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp. | MR

[6] M.I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC methods”, Inverse problems, 35:10 (2004), 4069–4088 | MR

[7] R. Carlson, “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351 (1999), 101–121 | DOI | MR

[8] P. Kurasov, F. Stenberg, “On the inverse scattering problem on branching graphs”, J. Phys. A. Math. Gen., 20 (2002), 647–672 | MR

[9] M. Ramirez Jorge, “Green's Functions for Sturm-Liouville Problems on Directed Tree Graphs”, Revista Colombiana de Matemáticas, 46 (2012), 15–25 | MR | Zbl

[10] Yurko V. A., “O vosstanovlenii operatorov Shturma-Liuvillya na grafakh”, Matemat. zametki, 79:4 (2006), 619–630 | DOI | MR | Zbl

[11] M. Astudillo, P. Kurasov, M. Usman, “RT-symmetric laplace operators on star graphs: Real spectrum and selfadjointness”, Adv. Math. Phys., 2015 | MR

[12] P. Kurasov, M. Garjiani, “Quantum graphs: PT-symmetry and reflection symmetry of the spectrum”, Journal of Mathematical Physics, 58 (2017) | DOI | MR | Zbl

[13] M. Znojil, “Quantum star-graph analogues of PT-symmetric square wells”, Can. J. Phys., 90:12 (2012), 1287–1293 | DOI

[14] M. Znojil, “Quantum star-graph analogues of PT-symmetric square wells: Part II. Spectra”, Can. J. Phys., 93:7 (2014), 765–768 | DOI | MR

[15] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR

[16] Tsoi S., Tskhai S. M., Prikladnaya teoriya grafov, Nauka, Alma-Ata, 1971, 499 pp. | MR

[17] F. Harary, Graph theory, Addison-Wesley Publishing Company, 1969, 274 pp. | MR | Zbl

[18] O. Post, Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics, 2039, Springer Science Business Media, 2012 | DOI | MR | Zbl

[19] Afanaseva N. A., Bulot L. P., Elektrotekhnika i elektronika, SPbGUN i P.T., SPb., 2010, 181 pp.