@article{UFA_2017_9_4_a3,
author = {L. K. Zhapsarbayeva and B. E. Kanguzhin and M. N. Konyrkulzhayeva},
title = {Self-adjoint restrictions of maximal operator on graph},
journal = {Ufa mathematical journal},
pages = {35--43},
year = {2017},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a3/}
}
TY - JOUR AU - L. K. Zhapsarbayeva AU - B. E. Kanguzhin AU - M. N. Konyrkulzhayeva TI - Self-adjoint restrictions of maximal operator on graph JO - Ufa mathematical journal PY - 2017 SP - 35 EP - 43 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a3/ LA - en ID - UFA_2017_9_4_a3 ER -
L. K. Zhapsarbayeva; B. E. Kanguzhin; M. N. Konyrkulzhayeva. Self-adjoint restrictions of maximal operator on graph. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 35-43. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a3/
[1] Pokornyi Yu. V., “O spektre nekotorykh zadach na grafakh”, Uspekhi mat. nauki, 42:4 (1987), 128–129
[2] Pokornyi Yu. V., Penkin O. M., “O kraevoi zadache na grafe”, Differentsialnye uravneniya, 24 (1988), 701–703 | MR
[3] Pokornyi Yu. V., Priyadiev V. L., Al-Obeid A., “Ob ostsilyatsionnykh svoistvakh spektra kraevoi zadachi na grafe”, Matem. zametki, 60:3 (1996), 468–469 | DOI | MR
[4] Pokornyi Yu. V., Priyadiev V. L., “Nekotorye problemy kachestvennoi teorii Shturma–Liuvillya na prostranstvennykh setyakh”, Uspekhi mat. nauki, 59:6 (2004), 115–150 | DOI
[5] Pokornyi Yu. V., Penkin O. M., Priyadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp. | MR
[6] M.I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC methods”, Inverse problems, 35:10 (2004), 4069–4088 | MR
[7] R. Carlson, “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351 (1999), 101–121 | DOI | MR
[8] P. Kurasov, F. Stenberg, “On the inverse scattering problem on branching graphs”, J. Phys. A. Math. Gen., 20 (2002), 647–672 | MR
[9] M. Ramirez Jorge, “Green's Functions for Sturm-Liouville Problems on Directed Tree Graphs”, Revista Colombiana de Matemáticas, 46 (2012), 15–25 | MR | Zbl
[10] Yurko V. A., “O vosstanovlenii operatorov Shturma-Liuvillya na grafakh”, Matemat. zametki, 79:4 (2006), 619–630 | DOI | MR | Zbl
[11] M. Astudillo, P. Kurasov, M. Usman, “RT-symmetric laplace operators on star graphs: Real spectrum and selfadjointness”, Adv. Math. Phys., 2015 | MR
[12] P. Kurasov, M. Garjiani, “Quantum graphs: PT-symmetry and reflection symmetry of the spectrum”, Journal of Mathematical Physics, 58 (2017) | DOI | MR | Zbl
[13] M. Znojil, “Quantum star-graph analogues of PT-symmetric square wells”, Can. J. Phys., 90:12 (2012), 1287–1293 | DOI
[14] M. Znojil, “Quantum star-graph analogues of PT-symmetric square wells: Part II. Spectra”, Can. J. Phys., 93:7 (2014), 765–768 | DOI | MR
[15] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR
[16] Tsoi S., Tskhai S. M., Prikladnaya teoriya grafov, Nauka, Alma-Ata, 1971, 499 pp. | MR
[17] F. Harary, Graph theory, Addison-Wesley Publishing Company, 1969, 274 pp. | MR | Zbl
[18] O. Post, Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics, 2039, Springer Science Business Media, 2012 | DOI | MR | Zbl
[19] Afanaseva N. A., Bulot L. P., Elektrotekhnika i elektronika, SPbGUN i P.T., SPb., 2010, 181 pp.