Pavlov–Korevaar–Dixon interpolation problem with majorant in convergence class
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 22-34
Cet article a éte moissonné depuis la source Math-Net.Ru
We study an interpolation problem in the class of entire functions of exponential type determined by some majorant in a convergence class (non-quasianalytic majorant). In a smaller class, when the majorant possessed a concavity property, similar problem was studied by B. Berndtsson with the nodes at some subsequence of natural numbers. He obtained a solvability criterion for this interpolation problem. At that, he applied first the Hörmander method for solving a $\overline{\partial}$-problem. In works by A.I. Pavlov, J. Korevaar and M. Dixon, interpolation sequences in the Berndtsson sense were applied successfully in a series of problems in the complex analysis. At that, there was found a relation with approximative properties of the system of powers $\{z^{p_n}\}$ and with the well known Polya and Macintyre problems. In this paper we establish the criterion of the interpolation property in a more general sense for an arbitrary sequence of real numbers. In the proof of the main theorem we employ a modification of the Berndtsson method.
Keywords:
entire function
Mots-clés : interpolation sequence, convergence class.
Mots-clés : interpolation sequence, convergence class.
@article{UFA_2017_9_4_a2,
author = {R. A. Gaisin},
title = {Pavlov{\textendash}Korevaar{\textendash}Dixon interpolation problem with majorant in convergence class},
journal = {Ufa mathematical journal},
pages = {22--34},
year = {2017},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a2/}
}
R. A. Gaisin. Pavlov–Korevaar–Dixon interpolation problem with majorant in convergence class. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 22-34. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a2/
[1] Berndtsson B., “A note on Pavlov-Korevaar-Dixon interpolation”, Indag. Math., 40:4 (1978), 409–414 | DOI | MR | Zbl
[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR
[3] Gaisin A. M., Tselye funktsii: osnovy klassicheskoi teorii s prilozheniyami k issledovaniyam po kompleksnomu analizu, RITs BashGU, Ufa, 2016, 160 pp.
[4] Katsnelson V. E., “Tselye funktsii klassa Kartrait s neregulyarnym povedeniem”, Funktsionalnyi analiz i ego prilozheniya, 10:4 (1976), 35–44 | MR | Zbl
[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984, 472 pp. | MR