On basicity of eigenfunctions of second order discontinuous differential operator
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 109-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a spectral problem for a second order discontinuous differential operator with spectral parameter in the boundary condition. We present a method for establishing the basicity of eigenfunctions for such problem. We also consider a direct expansion of a Banach space with respect to subspaces and we propose a method for constructing a basis for a space by the bases in subspaces. We also consider the cases when the bases for subspaces are isomorphic and the corresponding isomorphisms are not needed. The completeness, minimality and uniform minimality of the corresponding systems are studied. This approach has extensive applications in the spectral theory of discontinuous differential operators.
Keywords: eigenfunctions, basis, completeness, minimality, uniform minimality.
@article{UFA_2017_9_1_a9,
     author = {B. T. Bilalov and T. B. Gasymov},
     title = {On basicity of eigenfunctions of second order discontinuous differential operator},
     journal = {Ufa mathematical journal},
     pages = {109--122},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a9/}
}
TY  - JOUR
AU  - B. T. Bilalov
AU  - T. B. Gasymov
TI  - On basicity of eigenfunctions of second order discontinuous differential operator
JO  - Ufa mathematical journal
PY  - 2017
SP  - 109
EP  - 122
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a9/
LA  - en
ID  - UFA_2017_9_1_a9
ER  - 
%0 Journal Article
%A B. T. Bilalov
%A T. B. Gasymov
%T On basicity of eigenfunctions of second order discontinuous differential operator
%J Ufa mathematical journal
%D 2017
%P 109-122
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a9/
%G en
%F UFA_2017_9_1_a9
B. T. Bilalov; T. B. Gasymov. On basicity of eigenfunctions of second order discontinuous differential operator. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a9/

[1] D. L. Russel, “On exponential bases for the Sobolev spaces over an interval”, J. Math. Anal. Appl., 87:2 (1982), 528–550 | DOI | MR | Zbl

[2] A. M. Sedletskii, “Approximate properties of exponential systems in Sobolev spaces”, Vestn. Mosk. Univ. Ser. Matem. Mekh., 1999, no. 6, 3–8 (in Russian) | MR

[3] Z. G. Huseynov, A. M. Shykhammedov, “On bases of sines and cosines in Sobolev spaces”, Appl. Math. Lett., 25:3 (2012), 275–278 | DOI | MR | Zbl

[4] B. T. Bilalov, T. B. Gasymov, “On basicity of a part of a systems with infinite defect”, Trans. NAS Azerb., 27:7 (2007), 53–59 | MR

[5] T. B. Gasymov, “On necessary and sufficient conditions of basicity of some defective systems in Banach space”, Trans. NAS Azerb., 26:1 (2006), 65–70 | MR | Zbl

[6] B. T. Bilalov, “Bases of exponentials, sines, and cosines”, Differ. Uravn., 39:5 (2003), 619–623 | MR | Zbl

[7] B. T. Bilalov, T. R. Muradov, “Defect bases of Banach spaces”, Proc. IMM NASA, 22:30 (2005), 23–26 | MR | Zbl

[8] X. He, H. Volkmer, “Riesz bases of solutions of Sturm–Liouville equations”, J. Fourier Anal. Appl., 7:3 (2001), 297–307 | DOI | MR | Zbl

[9] A. A. Huseynli, “On the stability of basisness in $L_p$ ($1

\infty$) of cosines and sines”, Turk. J. Math., 35:1 (2011), 47–54 | MR | Zbl

[10] T. B. Gasymov, Sh. J. Mammadova, “On convergence of spectral expansions for one discontinuous problem with spectral parameter in the boundary condition”, Trans. NAS Azerb., 26:4 (2006), 103–116 | MR | Zbl

[11] Int. Ser. Monog. Pure Appl. Math., 39, Pregamon Press, Oxford, 1963 | Zbl

[12] F. V. Atkinson, Discrete and continuous boundary problems, Mir, Moscow, 1968 (in Russian) | MR | Zbl

[13] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1976 | MR | Zbl

[14] I. C. Gohberg, A. S. Markus, “On stability of bases of Banach and Hilbert spaces”, Izv. Akad. Nauk. Mold. SSR, 1962, no. 5, 17–35 | MR

[15] Russ. Math. Surv., 25:3 (1970), 111–170 | DOI | MR | Zbl | Zbl

[16] N. K. Bari, “Biorthogonal systems and bases in Hilbert space”, Uchen. Zap. Mosk. Gos. Univ., 148, 1951, 69–107 | MR

[17] Sov. Math. Dokl., 5 (1964), 559–561 | MR | Zbl

[18] B. T. Bilalov, “On the basis property of systems of exponentials, cosines, and sines in $L_p$”, Dokl. Math., 365:1 (1999), 7–8 | MR | Zbl

[19] B. T. Bilalov, “On bases for some systems of exponentials, cosines, and sines in $L_p$”, Dokl. Math., 379:2 (2001), 158–160 | MR | Zbl

[20] O. Christensen, An introduction to frames and Riesz bases, Birkhäser, Boston, 2003 | MR | Zbl

[21] O. Christensen, “Frames, Riesz bases and discrete Gabor-wavelet expansions”, Bull. Amer. Math. Soc., 38:3 (2001), 273–291 | DOI | MR | Zbl

[22] Ch. Heil, A Basis theory Primer, Birkhäuser, Basel, 2011 | MR | Zbl

[23] I. Singer, Bases in Banach spaces, v. 1, Springer, Berlin, 1970 | MR | Zbl

[24] I. Singer, Bases in Banach spaces, v. 2, Springer, Berlin, 1981 | MR | Zbl

[25] I. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monog., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl

[26] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. of Math. Monog., 71, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[27] R. M. Young, An introduction to nonharmonic Fourier series, Pure Appl. Math., 93, Academic Press, New York, 1980 | MR | Zbl

[28] B. T. Bilalov, Z. V. Mamedova, “On the frame properties of some degenerate trigonometric system”, Dokl. Acad. Nauk, 68:5 (2012), 14–18 | MR

[29] B. T. Bilalov, S. R. Sadigova, Z. V. Mamedova, “The space of coefficients in a linear topological space”, J. Math. Research., 4:6 (2012), 83–88 | MR | Zbl

[30] B. T. Bilalov, Ch. M. Hashimov, “On Decomposition in Banach Spaces”, Proc. IMM NAS Azerb., 40:2 (2014), 97–106 | MR

[31] S. R. Sadigova, Z. A. Kasumov, “On atomic decomposition for Hardy classes with respect to degenerate exponential systems”, Proc. IMM NAS Azerb., 40:1 (2014), 55–67 | MR | Zbl

[32] W. Rudin, Functional analysis, McGraw-Hill Book Comp., New York, 1973 | MR | Zbl