@article{UFA_2017_9_1_a9,
author = {B. T. Bilalov and T. B. Gasymov},
title = {On basicity of eigenfunctions of second order discontinuous differential operator},
journal = {Ufa mathematical journal},
pages = {109--122},
year = {2017},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a9/}
}
B. T. Bilalov; T. B. Gasymov. On basicity of eigenfunctions of second order discontinuous differential operator. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a9/
[1] D. L. Russel, “On exponential bases for the Sobolev spaces over an interval”, J. Math. Anal. Appl., 87:2 (1982), 528–550 | DOI | MR | Zbl
[2] A. M. Sedletskii, “Approximate properties of exponential systems in Sobolev spaces”, Vestn. Mosk. Univ. Ser. Matem. Mekh., 1999, no. 6, 3–8 (in Russian) | MR
[3] Z. G. Huseynov, A. M. Shykhammedov, “On bases of sines and cosines in Sobolev spaces”, Appl. Math. Lett., 25:3 (2012), 275–278 | DOI | MR | Zbl
[4] B. T. Bilalov, T. B. Gasymov, “On basicity of a part of a systems with infinite defect”, Trans. NAS Azerb., 27:7 (2007), 53–59 | MR
[5] T. B. Gasymov, “On necessary and sufficient conditions of basicity of some defective systems in Banach space”, Trans. NAS Azerb., 26:1 (2006), 65–70 | MR | Zbl
[6] B. T. Bilalov, “Bases of exponentials, sines, and cosines”, Differ. Uravn., 39:5 (2003), 619–623 | MR | Zbl
[7] B. T. Bilalov, T. R. Muradov, “Defect bases of Banach spaces”, Proc. IMM NASA, 22:30 (2005), 23–26 | MR | Zbl
[8] X. He, H. Volkmer, “Riesz bases of solutions of Sturm–Liouville equations”, J. Fourier Anal. Appl., 7:3 (2001), 297–307 | DOI | MR | Zbl
[9] A. A. Huseynli, “On the stability of basisness in $L_p$ ($1
\infty$) of cosines and sines”, Turk. J. Math., 35:1 (2011), 47–54 | MR | Zbl[10] T. B. Gasymov, Sh. J. Mammadova, “On convergence of spectral expansions for one discontinuous problem with spectral parameter in the boundary condition”, Trans. NAS Azerb., 26:4 (2006), 103–116 | MR | Zbl
[11] Int. Ser. Monog. Pure Appl. Math., 39, Pregamon Press, Oxford, 1963 | Zbl
[12] F. V. Atkinson, Discrete and continuous boundary problems, Mir, Moscow, 1968 (in Russian) | MR | Zbl
[13] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1976 | MR | Zbl
[14] I. C. Gohberg, A. S. Markus, “On stability of bases of Banach and Hilbert spaces”, Izv. Akad. Nauk. Mold. SSR, 1962, no. 5, 17–35 | MR
[15] Russ. Math. Surv., 25:3 (1970), 111–170 | DOI | MR | Zbl | Zbl
[16] N. K. Bari, “Biorthogonal systems and bases in Hilbert space”, Uchen. Zap. Mosk. Gos. Univ., 148, 1951, 69–107 | MR
[17] Sov. Math. Dokl., 5 (1964), 559–561 | MR | Zbl
[18] B. T. Bilalov, “On the basis property of systems of exponentials, cosines, and sines in $L_p$”, Dokl. Math., 365:1 (1999), 7–8 | MR | Zbl
[19] B. T. Bilalov, “On bases for some systems of exponentials, cosines, and sines in $L_p$”, Dokl. Math., 379:2 (2001), 158–160 | MR | Zbl
[20] O. Christensen, An introduction to frames and Riesz bases, Birkhäser, Boston, 2003 | MR | Zbl
[21] O. Christensen, “Frames, Riesz bases and discrete Gabor-wavelet expansions”, Bull. Amer. Math. Soc., 38:3 (2001), 273–291 | DOI | MR | Zbl
[22] Ch. Heil, A Basis theory Primer, Birkhäuser, Basel, 2011 | MR | Zbl
[23] I. Singer, Bases in Banach spaces, v. 1, Springer, Berlin, 1970 | MR | Zbl
[24] I. Singer, Bases in Banach spaces, v. 2, Springer, Berlin, 1981 | MR | Zbl
[25] I. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monog., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | Zbl
[26] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. of Math. Monog., 71, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[27] R. M. Young, An introduction to nonharmonic Fourier series, Pure Appl. Math., 93, Academic Press, New York, 1980 | MR | Zbl
[28] B. T. Bilalov, Z. V. Mamedova, “On the frame properties of some degenerate trigonometric system”, Dokl. Acad. Nauk, 68:5 (2012), 14–18 | MR
[29] B. T. Bilalov, S. R. Sadigova, Z. V. Mamedova, “The space of coefficients in a linear topological space”, J. Math. Research., 4:6 (2012), 83–88 | MR | Zbl
[30] B. T. Bilalov, Ch. M. Hashimov, “On Decomposition in Banach Spaces”, Proc. IMM NAS Azerb., 40:2 (2014), 97–106 | MR
[31] S. R. Sadigova, Z. A. Kasumov, “On atomic decomposition for Hardy classes with respect to degenerate exponential systems”, Proc. IMM NAS Azerb., 40:1 (2014), 55–67 | MR | Zbl
[32] W. Rudin, Functional analysis, McGraw-Hill Book Comp., New York, 1973 | MR | Zbl