Symmetries and exact solutions of a nonlinear pricing options equation
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 29-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the group structure of the Schönbucher–Wilmott equation with a free parameter, which models the pricing options. We find a five-dimensional group of equivalence transformations for this equation. By means of this group we find four-dimensional Lie algebras of the admitted operators of the equation in the cases of two cases of the free term and we find a three-dimensional Lie algebra for other nonequivalent specifications. For each algebra we find optimal systems of subalgebras and the corresponding invariant solutions or invariant submodels.
Keywords: nonlinear partial differential equation, nonlinear Black–Scholes equation, pricing options, group analysis
Mots-clés : Schönbucher–Wilmott model, invariant solution.
@article{UFA_2017_9_1_a2,
     author = {M. M. Dyshaev and V. E. Fedorov},
     title = {Symmetries and exact solutions of a~nonlinear pricing options equation},
     journal = {Ufa mathematical journal},
     pages = {29--40},
     year = {2017},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/}
}
TY  - JOUR
AU  - M. M. Dyshaev
AU  - V. E. Fedorov
TI  - Symmetries and exact solutions of a nonlinear pricing options equation
JO  - Ufa mathematical journal
PY  - 2017
SP  - 29
EP  - 40
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/
LA  - en
ID  - UFA_2017_9_1_a2
ER  - 
%0 Journal Article
%A M. M. Dyshaev
%A V. E. Fedorov
%T Symmetries and exact solutions of a nonlinear pricing options equation
%J Ufa mathematical journal
%D 2017
%P 29-40
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/
%G en
%F UFA_2017_9_1_a2
M. M. Dyshaev; V. E. Fedorov. Symmetries and exact solutions of a nonlinear pricing options equation. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/

[1] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, Journal of Political Economy, 81 (1973), 637–659 | DOI | MR

[2] F. Black, “The pricing of Commodity Contracts”, Journal of Financial Economics, 3 (1976), 167–179 | DOI

[3] J. Cox, S. Ross, M. Rubinstein, “Option pricing: a simplified approach”, Journal of Financial Economics, 7 (1979), 229–263 | DOI | Zbl

[4] J. Duan, “The GARCH option pricing model”, Mathematical Finance, 5 (1995), 13–32 | DOI | MR | Zbl

[5] E. Derman, N. Taleb, “The illusions of dynamic replication”, Quantitative Finance, 5:4 (2005), 323–326 | DOI | MR | Zbl

[6] E. G. Haug, N. N. Taleb, “Option traders use (very) sophisticated heuristics, never the Black–Scholes–Merton formula”, Journal of Economic Behavior and Organization, 77:2 (2011), 97–106 | DOI

[7] J. C. Hull, A. White, “The pricing of options on assets with stochastic volatilities”, The Journal of Finance, 42 (1987), 281–300 | DOI

[8] H. E. Leland, “Option pricing and replication with transactions costs”, The Journal of Finance, 40 (1985), 1283–1301 | DOI

[9] U. Cetin, R. Jarrow, P. Protter, “Liquidity risk and arbitrage pricing theory”, Finance and Stochastic, 8 (2004), 311–341 | DOI | MR | Zbl

[10] R. Frey, “Market illiquidity as a source of model risk in dynamic hedging”, Model Risk, ed. R. Gibson, Risk Publications, London, 2000, 125–136

[11] R. Frey, P. Patie, “Risk Management for Derivatives in Illiquid Markets: a Simulation Study”, Advances in Finance and Stochastics, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 137–159 | DOI | MR | Zbl

[12] M. Jandaćka, D. Śevćović, “On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile”, Journal of Applied Mathematics, 3 (2005), 253–258 | MR

[13] H. Liu, J. Yong, “Option pricing with an illiquid underlying asset market”, Journal of Economic Dynamics and Control, 29:12 (2005), 2125–2156 | DOI | MR | Zbl

[14] R. Frey, A. Stremme, “Market volatility and feedback effects from dynamic hedging”, Mathematical Finance, 7:4 (1997), 351–374 | DOI | MR | Zbl

[15] R. Frey, “Perfect option replication for a large trader”, Finance and Stochastics, 2 (1998), 115–148 | DOI

[16] R. A. Jarrow, “Derivative securities markets, market manipulation and option pricing theory”, Journal of Financial and Quantitative Analysis, 29 (1994), 241–261 | DOI

[17] P. Schonbucher, P. Wilmott, “The feedback-effect of hedging in illiquid markets”, SIAM Journal on Applied Mathematics, 61 (2000), 232–272 | DOI | MR | Zbl

[18] L. A. Bordag, R. Frey, “Pricing options in illiquid markets: symmetry reductions and exact solutions”, Nonlinear Models in Mathematical Finance, Chapter 3, ed. M. Ehrhardt, Nova Science Publishers, Inc., 2008, Research Trends in Option Pricing | MR

[19] E. Platen, M. Schweizer, “On feedback effects from hedging derivatives”, Mathematical Finance, 8 (1998), 67–84 | DOI | MR | Zbl

[20] P. Brandimarte, Numerical Methods in Finance Economics, John Wiley Sons Publications, 2004 ; Second edition, 2006, xxiv+669 pp. | MR

[21] G. Bakshi, C. Cao, Z. Chen, “Empirical performance of alternative option pricing models”, Journal of Finance, 52 (1997), 2003–2049 | DOI

[22] M. J. Morelli, G. Montagna, O. Nicrosini, M. Treccani, M. Farina, P. Amato, “Pricing financial derivatives with neural networks”, Physica A, 338 (2004), 160–165 | DOI

[23] S. Kou, “A jump diffusion model for option pricing”, Management Science, 48 (2002), 1086–1101 | DOI | Zbl

[24] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[25] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[26] R. K. Gazizov, N. H. Ibragimov, “Lie symmetry analysis of differential equations in finance”, Nonlinear Dynamics, 17 (1998), 387–407 | DOI | MR | Zbl

[27] L. A. Bordag, A. Y. Chmakova, “Explicit solutions for a nonlinear model of financial derivatives”, International Journal of Theoretical and Applied Finance, 10:1 (2007), 1–21 | DOI | MR | Zbl

[28] L. A. Bordag, “On option-valuation in illiquid markets: invariant solutions to a nonlinear model”, Mathematical Control Theory and Finance, eds. A. Sarychev, A. Shiryaev, M. Guerra, M. R. Grossinho, Springer, 2008, 71–94 | DOI | MR | Zbl

[29] A. Mikaelyan, Analytical Study of the Schönbucher–Wilmott Model of the Feedback Effect in Illiquid Markets, Master's thesis in financial mathematics, Halmstad University, Halmstad, 2009, viii+67 pp.

[30] L. A. Bordag, A. Mikaelyan, “Models of self-financing hedging strategies in illiquid markets: symmetry reductions and exact solutions”, Journal Letters in Mathematical Physics, 96:1–3 (2011), 191–207 | DOI | MR | Zbl

[31] Chirkunov Yu. A., Khabirov S. V., Elementy simmetriinogo analiza differentsialnykh uravnenii mekhaniki sploshnoi sredy, NGTU, Novosibirsk, 2012, 659 pp.