Symmetries and exact solutions of a~nonlinear pricing options equation
Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 29-40

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the group structure of the Schönbucher–Wilmott equation with a free parameter, which models the pricing options. We find a five-dimensional group of equivalence transformations for this equation. By means of this group we find four-dimensional Lie algebras of the admitted operators of the equation in the cases of two cases of the free term and we find a three-dimensional Lie algebra for other nonequivalent specifications. For each algebra we find optimal systems of subalgebras and the corresponding invariant solutions or invariant submodels.
Keywords: nonlinear partial differential equation, nonlinear Black–Scholes equation, Schönbucher–Wilmott model, pricing options, group analysis
Mots-clés : invariant solution.
@article{UFA_2017_9_1_a2,
     author = {M. M. Dyshaev and V. E. Fedorov},
     title = {Symmetries and exact solutions of a~nonlinear pricing options equation},
     journal = {Ufa mathematical journal},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/}
}
TY  - JOUR
AU  - M. M. Dyshaev
AU  - V. E. Fedorov
TI  - Symmetries and exact solutions of a~nonlinear pricing options equation
JO  - Ufa mathematical journal
PY  - 2017
SP  - 29
EP  - 40
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/
LA  - en
ID  - UFA_2017_9_1_a2
ER  - 
%0 Journal Article
%A M. M. Dyshaev
%A V. E. Fedorov
%T Symmetries and exact solutions of a~nonlinear pricing options equation
%J Ufa mathematical journal
%D 2017
%P 29-40
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/
%G en
%F UFA_2017_9_1_a2
M. M. Dyshaev; V. E. Fedorov. Symmetries and exact solutions of a~nonlinear pricing options equation. Ufa mathematical journal, Tome 9 (2017) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/UFA_2017_9_1_a2/